mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-02 09:12:03 +00:00
Merge branch 'master' into compilade/refactor-kv-cache
Also begin reverting some implicit state rollback code.
This commit is contained in:
@@ -94,9 +94,12 @@ class Keys:
|
||||
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
|
||||
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
|
||||
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
|
||||
SWIN_NORM = "{arch}.swin_norm"
|
||||
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
|
||||
TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
|
||||
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
|
||||
RESIDUAL_SCALE = "{arch}.residual_scale"
|
||||
EMBEDDING_SCALE = "{arch}.embedding_scale"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
@@ -112,6 +115,7 @@ class Keys:
|
||||
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
||||
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
|
||||
SLIDING_WINDOW = "{arch}.attention.sliding_window"
|
||||
SCALE = "{arch}.attention.scale"
|
||||
|
||||
class Rope:
|
||||
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
||||
@@ -148,6 +152,8 @@ class Keys:
|
||||
MERGES = "tokenizer.ggml.merges"
|
||||
BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||
EOS_ID = "tokenizer.ggml.eos_token_id"
|
||||
EOT_ID = "tokenizer.ggml.eot_token_id"
|
||||
EOM_ID = "tokenizer.ggml.eom_token_id"
|
||||
UNK_ID = "tokenizer.ggml.unknown_token_id"
|
||||
SEP_ID = "tokenizer.ggml.seperator_token_id"
|
||||
PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||
@@ -164,11 +170,16 @@ class Keys:
|
||||
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
|
||||
CHAT_TEMPLATES = "tokenizer.chat_templates"
|
||||
# FIM/Infill special tokens constants
|
||||
FIM_PRE_ID = "tokenizer.ggml.fim_pre_token_id"
|
||||
FIM_SUF_ID = "tokenizer.ggml.fim_suf_token_id"
|
||||
FIM_MID_ID = "tokenizer.ggml.fim_mid_token_id"
|
||||
FIM_PAD_ID = "tokenizer.ggml.fim_pad_token_id"
|
||||
FIM_REP_ID = "tokenizer.ggml.fim_rep_token_id"
|
||||
FIM_SEP_ID = "tokenizer.ggml.fim_sep_token_id"
|
||||
# deprecated:
|
||||
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
|
||||
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
|
||||
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
|
||||
EOT_ID = "tokenizer.ggml.eot_token_id"
|
||||
EOM_ID = "tokenizer.ggml.eom_token_id"
|
||||
|
||||
class Adapter:
|
||||
TYPE = "adapter.type"
|
||||
@@ -210,6 +221,7 @@ class MODEL_ARCH(IntEnum):
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
MINICPM = auto()
|
||||
MINICPM3 = auto()
|
||||
GEMMA = auto()
|
||||
GEMMA2 = auto()
|
||||
STARCODER2 = auto()
|
||||
@@ -220,6 +232,7 @@ class MODEL_ARCH(IntEnum):
|
||||
COMMAND_R = auto()
|
||||
DBRX = auto()
|
||||
OLMO = auto()
|
||||
OLMOE = auto()
|
||||
OPENELM = auto()
|
||||
ARCTIC = auto()
|
||||
DEEPSEEK2 = auto()
|
||||
@@ -230,6 +243,9 @@ class MODEL_ARCH(IntEnum):
|
||||
JAIS = auto()
|
||||
NEMOTRON = auto()
|
||||
EXAONE = auto()
|
||||
GRANITE = auto()
|
||||
GRANITE_MOE = auto()
|
||||
CHAMELEON = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
@@ -340,6 +356,8 @@ class MODEL_TENSOR(IntEnum):
|
||||
ENC_FFN_DOWN = auto()
|
||||
ENC_FFN_UP = auto()
|
||||
ENC_OUTPUT_NORM = auto()
|
||||
CLS = auto() # classifier
|
||||
CLS_OUT = auto() # classifier output projection
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
@@ -368,6 +386,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
MODEL_ARCH.MINICPM: "minicpm",
|
||||
MODEL_ARCH.MINICPM3: "minicpm3",
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.GEMMA2: "gemma2",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
@@ -378,6 +397,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.DBRX: "dbrx",
|
||||
MODEL_ARCH.OLMO: "olmo",
|
||||
MODEL_ARCH.OLMOE: "olmoe",
|
||||
MODEL_ARCH.OPENELM: "openelm",
|
||||
MODEL_ARCH.ARCTIC: "arctic",
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
@@ -388,6 +408,9 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
MODEL_ARCH.NEMOTRON: "nemotron",
|
||||
MODEL_ARCH.EXAONE: "exaone",
|
||||
MODEL_ARCH.GRANITE: "granite",
|
||||
MODEL_ARCH.GRANITE_MOE: "granitemoe",
|
||||
MODEL_ARCH.CHAMELEON: "chameleon",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
@@ -498,6 +521,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
|
||||
MODEL_TENSOR.CLS: "cls",
|
||||
MODEL_TENSOR.CLS_OUT: "cls.output",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
@@ -607,6 +632,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
MODEL_TENSOR.CLS,
|
||||
MODEL_TENSOR.CLS_OUT,
|
||||
],
|
||||
MODEL_ARCH.NOMIC_BERT: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
@@ -638,6 +665,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
MODEL_TENSOR.CLS,
|
||||
],
|
||||
MODEL_ARCH.MPT: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
@@ -801,6 +829,8 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FACTORS_LONG,
|
||||
MODEL_TENSOR.ROPE_FACTORS_SHORT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
@@ -875,6 +905,25 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.MINICPM3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FACTORS_LONG,
|
||||
MODEL_TENSOR.ROPE_FACTORS_SHORT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_A,
|
||||
MODEL_TENSOR.ATTN_Q_B,
|
||||
MODEL_TENSOR.ATTN_KV_A_MQA,
|
||||
MODEL_TENSOR.ATTN_KV_B,
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM,
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GEMMA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -1044,6 +1093,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.OLMOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
],
|
||||
MODEL_ARCH.OPENELM: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -1222,6 +1288,51 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GRANITE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GRANITE_MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.CHAMELEON: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
@@ -1511,6 +1622,8 @@ KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
|
||||
KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
|
||||
KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
|
||||
KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
|
||||
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
||||
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
|
||||
KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
|
||||
KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
|
||||
KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
|
||||
@@ -1518,8 +1631,15 @@ KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
|
||||
KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
|
||||
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
|
||||
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
|
||||
KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
|
||||
|
||||
KEY_TOKENIZER_FIM_PRE_ID = Keys.Tokenizer.FIM_PRE_ID
|
||||
KEY_TOKENIZER_FIM_SUF_ID = Keys.Tokenizer.FIM_SUF_ID
|
||||
KEY_TOKENIZER_FIM_MID_ID = Keys.Tokenizer.FIM_MID_ID
|
||||
KEY_TOKENIZER_FIM_PAD_ID = Keys.Tokenizer.FIM_PAD_ID
|
||||
KEY_TOKENIZER_FIM_REP_ID = Keys.Tokenizer.FIM_REP_ID
|
||||
KEY_TOKENIZER_FIM_SEP_ID = Keys.Tokenizer.FIM_SEP_ID
|
||||
|
||||
# deprecated
|
||||
KEY_TOKENIZER_PREFIX_ID = Keys.Tokenizer.PREFIX_ID
|
||||
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
|
||||
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
|
||||
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
||||
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
|
||||
|
||||
@@ -670,6 +670,9 @@ class GGUFWriter:
|
||||
def add_expert_weights_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_swin_norm(self, value: bool) -> None:
|
||||
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)
|
||||
|
||||
def add_rescale_every_n_layers(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count)
|
||||
|
||||
@@ -679,6 +682,12 @@ class GGUFWriter:
|
||||
def add_time_decay_extra_dim(self, dim: int) -> None:
|
||||
self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim)
|
||||
|
||||
def add_residual_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_embedding_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_wkv_head_size(self, size: int) -> None:
|
||||
self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size)
|
||||
|
||||
@@ -703,6 +712,9 @@ class GGUFWriter:
|
||||
def add_sliding_window(self, value: int) -> None:
|
||||
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
|
||||
|
||||
def add_attention_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_pooling_type(self, value: PoolingType) -> None:
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
@@ -831,15 +843,6 @@ class GGUFWriter:
|
||||
|
||||
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
|
||||
|
||||
def add_prefix_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)
|
||||
|
||||
def add_suffix_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)
|
||||
|
||||
def add_middle_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)
|
||||
|
||||
def add_eot_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.EOT_ID, id)
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@ class TensorNameMap:
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
|
||||
"transformer.word_embeddings", # falcon
|
||||
"word_embeddings", # bloom
|
||||
"model.embed_tokens", # llama-hf nemotron
|
||||
"model.embed_tokens", # llama-hf nemotron olmoe
|
||||
"tok_embeddings", # llama-pth
|
||||
"embeddings.word_embeddings", # bert nomic-bert
|
||||
"language_model.embedding.word_embeddings", # persimmon
|
||||
@@ -54,7 +54,7 @@ class TensorNameMap:
|
||||
# Output
|
||||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
|
||||
"output", # llama-pth bloom internlm2
|
||||
"word_embeddings_for_head", # persimmon
|
||||
"lm_head.linear", # phi2
|
||||
@@ -66,7 +66,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.OUTPUT_NORM: (
|
||||
"gpt_neox.final_layer_norm", # gptneox
|
||||
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
|
||||
"model.norm", # llama-hf baichuan internlm2
|
||||
"model.norm", # llama-hf baichuan internlm2 olmoe
|
||||
"norm", # llama-pth
|
||||
"transformer.norm_f", # mpt dbrx
|
||||
"ln_f", # refact bloom qwen gpt2
|
||||
@@ -87,6 +87,9 @@ class TensorNameMap:
|
||||
"rope.freqs", # llama-pth
|
||||
"rotary_pos_emb.inv_freq", # chatglm
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ROPE_FACTORS_LONG: (),
|
||||
MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
|
||||
}
|
||||
|
||||
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||
@@ -98,7 +101,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||
"h.{bid}.input_layernorm", # bloom
|
||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||
"model.layers.{bid}.input_layernorm", # llama-hf nemotron
|
||||
"model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
|
||||
"layers.{bid}.attention_norm", # llama-pth
|
||||
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
||||
"model.layers.{bid}.ln1", # yi
|
||||
@@ -142,7 +145,7 @@ class TensorNameMap:
|
||||
|
||||
# Attention query
|
||||
MODEL_TENSOR.ATTN_Q: (
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe
|
||||
"layers.{bid}.attention.wq", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.query", # bert
|
||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||
@@ -154,7 +157,7 @@ class TensorNameMap:
|
||||
|
||||
# Attention key
|
||||
MODEL_TENSOR.ATTN_K: (
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe
|
||||
"layers.{bid}.attention.wk", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.key", # bert
|
||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||
@@ -167,7 +170,7 @@ class TensorNameMap:
|
||||
|
||||
# Attention value
|
||||
MODEL_TENSOR.ATTN_V: (
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe
|
||||
"layers.{bid}.attention.wv", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.value", # bert
|
||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||
@@ -185,7 +188,7 @@ class TensorNameMap:
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"h.{bid}.self_attention.dense", # bloom
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe
|
||||
"layers.{bid}.attention.wo", # llama-pth
|
||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||
@@ -229,7 +232,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
|
||||
"h.{bid}.post_attention_layernorm", # bloom
|
||||
"transformer.blocks.{bid}.norm_2", # mpt
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
|
||||
"layers.{bid}.ffn_norm", # llama-pth
|
||||
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
||||
"model.layers.{bid}.ln2", # yi
|
||||
@@ -253,12 +256,13 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"model.layers.{bid}.mlp.gate", # qwen2moe
|
||||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
"model.layers.{bid}.feed_forward.router", # jamba
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"model.layers.{bid}.mlp.gate", # qwen2moe olmoe
|
||||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
"model.layers.{bid}.feed_forward.router", # jamba
|
||||
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
@@ -299,7 +303,7 @@ class TensorNameMap:
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
|
||||
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||
@@ -332,7 +336,7 @@ class TensorNameMap:
|
||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
|
||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||
@@ -370,10 +374,11 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
|
||||
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||
@@ -384,7 +389,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.q_norm", # cohere
|
||||
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon
|
||||
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.q_norm", # openelm
|
||||
@@ -393,7 +398,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.ATTN_K_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.k_norm", # cohere
|
||||
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon
|
||||
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.k_norm", # openelm
|
||||
@@ -704,6 +709,15 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
||||
"encoder.final_layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.CLS: (
|
||||
"classifier", # jina
|
||||
"classifier.dense", # roberta
|
||||
),
|
||||
|
||||
MODEL_TENSOR.CLS_OUT: (
|
||||
"classifier.out_proj", # roberta
|
||||
),
|
||||
}
|
||||
|
||||
# architecture-specific block mappings
|
||||
|
||||
@@ -122,8 +122,30 @@ class SpecialVocab:
|
||||
tokenizer = json.load(f)
|
||||
if self.load_merges:
|
||||
merges = tokenizer.get('model', {}).get('merges')
|
||||
if isinstance(merges, list) and merges and isinstance(merges[0], str):
|
||||
self.merges = merges
|
||||
if isinstance(merges, list) and merges:
|
||||
if isinstance(merges[0], str):
|
||||
self.merges = merges
|
||||
elif isinstance(merges[0], list) and len(merges[0]) == 2 and isinstance(merges[0][0], str):
|
||||
# New format since transformers 4.45 to support spaces in merges
|
||||
# ref: https://github.com/ggerganov/llama.cpp/issues/9692
|
||||
# TODO: internally store as the new format instead of converting to old
|
||||
if any(' ' in s for pair in merges for s in pair):
|
||||
logger.warning(f'Spaces in merges detected, encoding as {chr(ord(" ") + 256)!r}')
|
||||
self.merges = [
|
||||
' '.join(
|
||||
[
|
||||
# ensure the spaces are properly encoded
|
||||
''.join(
|
||||
chr(ord(c) + 256) if c == ' ' else c
|
||||
for c in part
|
||||
)
|
||||
for part in pair
|
||||
]
|
||||
)
|
||||
for pair in merges
|
||||
]
|
||||
else:
|
||||
raise ValueError("Unknown tokenizer merges format")
|
||||
added_tokens = tokenizer.get('added_tokens', {})
|
||||
else:
|
||||
added_tokens = {}
|
||||
|
||||
Reference in New Issue
Block a user