mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-01 09:01:57 +00:00
Merge branch 'master' into compilade/refactor-kv-cache
Also begin reverting some implicit state rollback code.
This commit is contained in:
@@ -1,13 +1,16 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <random>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <random>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
@@ -23,18 +26,23 @@ struct seq_draft {
|
||||
std::vector<llama_token> tokens;
|
||||
std::vector<std::vector<llama_token_data>> dists;
|
||||
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
// needed to get candidate probs even for temp <= 0.0
|
||||
params.sparams.n_probs = 128;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.model_draft.empty()) {
|
||||
fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -44,15 +52,9 @@ int main(int argc, char ** argv) {
|
||||
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
|
||||
const float p_split = params.p_split;
|
||||
|
||||
std::default_random_engine rng(params.sparams.seed);
|
||||
std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed);
|
||||
std::uniform_real_distribution<> u_dist;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("speculative", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@@ -64,7 +66,7 @@ int main(int argc, char ** argv) {
|
||||
llama_context * ctx_dft = NULL;
|
||||
|
||||
// load the target model
|
||||
llama_init_result llama_init_tgt = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init_tgt = common_init_from_params(params);
|
||||
model_tgt = llama_init_tgt.model;
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
@@ -76,19 +78,19 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
||||
llama_init_result llama_init_dft = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LOG("vocab_type tgt: %d\n", vocab_type_tgt);
|
||||
LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
LOG("vocab_type dft: %d\n", vocab_type_dft);
|
||||
LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
fprintf(stderr, "%s: error: draft model vocab type must match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
|
||||
LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
|
||||
LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -98,7 +100,7 @@ int main(int argc, char ** argv) {
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)
|
||||
) {
|
||||
fprintf(stderr, "%s: error: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -110,8 +112,8 @@ int main(int argc, char ** argv) {
|
||||
: n_vocab_dft - n_vocab_tgt;
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
|
||||
LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return 1;
|
||||
}
|
||||
@@ -120,10 +122,10 @@ int main(int argc, char ** argv) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
|
||||
llama_token_to_piece(ctx_tgt, i).c_str(),
|
||||
llama_token_to_piece(ctx_dft, i).c_str());
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
|
||||
LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
@@ -132,24 +134,22 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx_tgt);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
if ((int) inp.size() > max_tokens_list_size) {
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
const int n_input = inp.size();
|
||||
|
||||
const auto t_enc_start = ggml_time_us();
|
||||
@@ -178,7 +178,7 @@ int main(int argc, char ** argv) {
|
||||
bool has_eos = false;
|
||||
|
||||
// target model sampling context (reuse the llama_context's sampling instance)
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
|
||||
|
||||
struct llama_sampler * softmax = llama_sampler_init_softmax();
|
||||
|
||||
@@ -186,8 +186,8 @@ int main(int argc, char ** argv) {
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
// allocate gpt_sampler for each draft sequence
|
||||
drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
|
||||
// allocate llama_sampler for each draft sequence
|
||||
drafts[s].smpl = common_sampler_init(model_dft, params.sparams);
|
||||
}
|
||||
|
||||
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||
@@ -211,7 +211,7 @@ int main(int argc, char ** argv) {
|
||||
active_seqs.insert(s);
|
||||
const auto & tokens = drafts[s].tokens;
|
||||
|
||||
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
|
||||
LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
|
||||
}
|
||||
|
||||
int i_dft = 0;
|
||||
@@ -229,9 +229,9 @@ int main(int argc, char ** argv) {
|
||||
bool accept = false;
|
||||
if (params.sparams.temp > 0) {
|
||||
// stochastic verification
|
||||
gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
|
||||
auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
|
||||
auto & dist_tgt = *common_sampler_get_candidates(smpl);
|
||||
|
||||
float p_tgt = 0.0f;
|
||||
float p_dft = 0.0f;
|
||||
@@ -254,7 +254,7 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
|
||||
LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
|
||||
float r = u_dist(rng);
|
||||
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
|
||||
|
||||
@@ -272,18 +272,18 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
LOG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
|
||||
LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
|
||||
if (r <= p_tgt / p_dft) {
|
||||
s_keep = s;
|
||||
accept = true;
|
||||
token_id = drafts[s].tokens[i_dft];
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
|
||||
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
break;
|
||||
} else {
|
||||
LOG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
drafts[s].active = false;
|
||||
|
||||
// calculate residual probability
|
||||
@@ -338,7 +338,7 @@ int main(int argc, char ** argv) {
|
||||
if (!accept) {
|
||||
// all drafted tokens were rejected
|
||||
// sample from the target model
|
||||
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
|
||||
LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
|
||||
std::vector<float> probs(dist_tgt.size);
|
||||
for (size_t i = 0; i < dist_tgt.size; ++i) {
|
||||
probs[i] = dist_tgt.data[i].p;
|
||||
@@ -349,21 +349,19 @@ int main(int argc, char ** argv) {
|
||||
const int idx = dist(rng);
|
||||
|
||||
token_id = dist_tgt.data[idx].id;
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
}
|
||||
} else {
|
||||
// greedy verification
|
||||
|
||||
// sample from the target model
|
||||
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, smpl->prev).c_str());
|
||||
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
@@ -371,7 +369,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
|
||||
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
|
||||
s_keep = s;
|
||||
accept = true;
|
||||
@@ -393,26 +391,24 @@ int main(int argc, char ** argv) {
|
||||
++i_dft;
|
||||
if (params.use_color) {
|
||||
// Color token according to its origin sequence
|
||||
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
|
||||
LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
|
||||
} else {
|
||||
printf("%s", token_str.c_str());
|
||||
LOG("%s", token_str.c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
continue;
|
||||
} else {
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
LOG("%s", token_str.c_str());
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
|
||||
LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
|
||||
|
||||
// TODO: simplify
|
||||
{
|
||||
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
|
||||
llama_past_seq_keep(ctx_dft, s_keep);
|
||||
llama_past_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||
@@ -436,12 +432,12 @@ int main(int argc, char ** argv) {
|
||||
drafts[0].dists.push_back(std::vector<llama_token_data>());
|
||||
drafts[0].i_batch_tgt.push_back(0);
|
||||
|
||||
llama_batch_clear(batch_dft);
|
||||
llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
common_batch_clear(batch_dft);
|
||||
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
|
||||
// FIXME: recurrent and hybrid models
|
||||
llama_past_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
// LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
llama_decode(ctx_dft, batch_dft);
|
||||
|
||||
++n_past_dft;
|
||||
@@ -452,9 +448,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (drafts[0].smpl) {
|
||||
gpt_sampler_free(drafts[0].smpl);
|
||||
common_sampler_free(drafts[0].smpl);
|
||||
}
|
||||
drafts[0].smpl = gpt_sampler_clone(smpl);
|
||||
drafts[0].smpl = common_sampler_clone(smpl);
|
||||
|
||||
int n_seq_cur = 1;
|
||||
int n_past_cur = n_past_dft;
|
||||
@@ -467,8 +463,8 @@ int main(int argc, char ** argv) {
|
||||
drafts[0].drafting = true;
|
||||
drafts[0].i_batch_dft = 0;
|
||||
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
|
||||
// sample n_draft tokens from the draft model using tree-based sampling
|
||||
for (int i = 0; i < n_draft; ++i) {
|
||||
@@ -483,13 +479,13 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
|
||||
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
|
||||
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
||||
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
std::vector<int> sa(1, s);
|
||||
@@ -497,7 +493,7 @@ int main(int argc, char ** argv) {
|
||||
// attempt to split the branch if the probability is high enough
|
||||
for (int f = 1; f < 8; ++f) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
|
||||
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_past_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
llama_past_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||
@@ -524,9 +520,9 @@ int main(int argc, char ** argv) {
|
||||
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||
|
||||
if (drafts[n_seq_cur].smpl) {
|
||||
gpt_sampler_free(drafts[n_seq_cur].smpl);
|
||||
common_sampler_free(drafts[n_seq_cur].smpl);
|
||||
}
|
||||
drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
|
||||
drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);
|
||||
|
||||
sa.push_back(n_seq_cur);
|
||||
|
||||
@@ -542,7 +538,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int s = sa[is];
|
||||
|
||||
gpt_sampler_accept(drafts[s].smpl, id, true);
|
||||
common_sampler_accept(drafts[s].smpl, id, true);
|
||||
|
||||
drafts[s].tokens.push_back(id);
|
||||
// save cur_p.data into drafts[s].dists
|
||||
@@ -551,12 +547,12 @@ int main(int argc, char ** argv) {
|
||||
// add unique drafted tokens to the target batch
|
||||
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
|
||||
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
|
||||
// add the token to the batch for batched decoding with the draft model
|
||||
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
||||
|
||||
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
common_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
drafts[s].drafting = false;
|
||||
@@ -586,7 +582,7 @@ int main(int argc, char ** argv) {
|
||||
llama_past_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
// LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
||||
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
|
||||
llama_decode(ctx_tgt, batch_tgt);
|
||||
++n_past_tgt;
|
||||
}
|
||||
@@ -604,28 +600,30 @@ int main(int argc, char ** argv) {
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
LOG_TEE("\n\n");
|
||||
LOG("\n\n");
|
||||
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_draft = %d\n", n_draft);
|
||||
LOG_INF("n_predict = %d\n", n_predict);
|
||||
LOG_INF("n_drafted = %d\n", n_drafted);
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_TEE("\ndraft:\n\n");
|
||||
LOG_INF("\n");
|
||||
LOG_INF("draft:\n\n");
|
||||
// TODO: print sampling/grammar timings for all drafts
|
||||
llama_perf_context_print(ctx_dft);
|
||||
|
||||
LOG_TEE("\ntarget:\n\n");
|
||||
gpt_perf_print(ctx_tgt, smpl);
|
||||
LOG_INF("\n");
|
||||
LOG_INF("target:\n\n");
|
||||
common_perf_print(ctx_tgt, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
gpt_sampler_free(drafts[s].smpl);
|
||||
common_sampler_free(drafts[s].smpl);
|
||||
}
|
||||
|
||||
llama_sampler_free(softmax);
|
||||
@@ -639,7 +637,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
LOG("\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user