mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	Merge branch 'master' into compilade/refactor-kv-cache
Also begin reverting some implicit state rollback code.
This commit is contained in:
		@@ -1,12 +1,11 @@
 | 
			
		||||
#include "arg.h"
 | 
			
		||||
#include "common.h"
 | 
			
		||||
#include "console.h"
 | 
			
		||||
#include "log.h"
 | 
			
		||||
#include "sampling.h"
 | 
			
		||||
#include "llama.h"
 | 
			
		||||
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <cinttypes>
 | 
			
		||||
#include <cmath>
 | 
			
		||||
#include <cstdio>
 | 
			
		||||
#include <cstring>
 | 
			
		||||
#include <ctime>
 | 
			
		||||
@@ -34,19 +33,21 @@
 | 
			
		||||
 | 
			
		||||
static llama_context           ** g_ctx;
 | 
			
		||||
static llama_model             ** g_model;
 | 
			
		||||
static gpt_sampler             ** g_smpl;
 | 
			
		||||
static gpt_params               * g_params;
 | 
			
		||||
static common_sampler          ** g_smpl;
 | 
			
		||||
static common_params            * g_params;
 | 
			
		||||
static std::vector<llama_token> * g_input_tokens;
 | 
			
		||||
static std::ostringstream       * g_output_ss;
 | 
			
		||||
static std::vector<llama_token> * g_output_tokens;
 | 
			
		||||
static bool is_interacting  = false;
 | 
			
		||||
static bool need_insert_eot = false;
 | 
			
		||||
 | 
			
		||||
static void print_usage(int, char ** argv) {
 | 
			
		||||
    printf("\nexample usage:\n");
 | 
			
		||||
    printf("\n  text generation:     %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
 | 
			
		||||
    printf("\n  chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
 | 
			
		||||
    printf("\n");
 | 
			
		||||
static void print_usage(int argc, char ** argv) {
 | 
			
		||||
    (void) argc;
 | 
			
		||||
 | 
			
		||||
    LOG("\nexample usage:\n");
 | 
			
		||||
    LOG("\n  text generation:     %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
 | 
			
		||||
    LOG("\n  chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
 | 
			
		||||
    LOG("\n");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static bool file_exists(const std::string & path) {
 | 
			
		||||
@@ -62,7 +63,7 @@ static bool file_is_empty(const std::string & path) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void write_logfile(
 | 
			
		||||
    const llama_context * ctx, const gpt_params & params, const llama_model * model,
 | 
			
		||||
    const llama_context * ctx, const common_params & params, const llama_model * model,
 | 
			
		||||
    const std::vector<llama_token> & input_tokens, const std::string & output,
 | 
			
		||||
    const std::vector<llama_token> & output_tokens
 | 
			
		||||
) {
 | 
			
		||||
@@ -74,8 +75,7 @@ static void write_logfile(
 | 
			
		||||
 | 
			
		||||
    const bool success = fs_create_directory_with_parents(params.logdir);
 | 
			
		||||
    if (!success) {
 | 
			
		||||
        fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
 | 
			
		||||
                __func__, params.logdir.c_str());
 | 
			
		||||
        LOG_ERR("%s: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str());
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -83,7 +83,7 @@ static void write_logfile(
 | 
			
		||||
    FILE * logfile = fopen(logfile_path.c_str(), "w");
 | 
			
		||||
 | 
			
		||||
    if (logfile == NULL) {
 | 
			
		||||
        fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
 | 
			
		||||
        LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -113,114 +113,102 @@ static void sigint_handler(int signo) {
 | 
			
		||||
            need_insert_eot = true;
 | 
			
		||||
        } else {
 | 
			
		||||
            console::cleanup();
 | 
			
		||||
            printf("\n");
 | 
			
		||||
            gpt_perf_print(*g_ctx, *g_smpl);
 | 
			
		||||
            LOG("\n");
 | 
			
		||||
            common_perf_print(*g_ctx, *g_smpl);
 | 
			
		||||
            write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
 | 
			
		||||
 | 
			
		||||
            // make sure all logs are flushed
 | 
			
		||||
            LOG("Interrupted by user\n");
 | 
			
		||||
            common_log_pause(common_log_main());
 | 
			
		||||
 | 
			
		||||
            _exit(130);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
 | 
			
		||||
    (void) level;
 | 
			
		||||
    (void) user_data;
 | 
			
		||||
    LOG_TEE("%s", text);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
 | 
			
		||||
    llama_chat_msg new_msg{role, content};
 | 
			
		||||
    auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
 | 
			
		||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
 | 
			
		||||
    common_chat_msg new_msg{role, content};
 | 
			
		||||
    auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
 | 
			
		||||
    chat_msgs.push_back({role, content});
 | 
			
		||||
    LOG("formatted: %s\n", formatted.c_str());
 | 
			
		||||
    LOG_DBG("formatted: '%s'\n", formatted.c_str());
 | 
			
		||||
    return formatted;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main(int argc, char ** argv) {
 | 
			
		||||
    gpt_params params;
 | 
			
		||||
    common_params params;
 | 
			
		||||
    g_params = ¶ms;
 | 
			
		||||
    if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
 | 
			
		||||
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    common_init();
 | 
			
		||||
 | 
			
		||||
    auto & sparams = params.sparams;
 | 
			
		||||
 | 
			
		||||
#ifndef LOG_DISABLE_LOGS
 | 
			
		||||
    log_set_target(log_filename_generator("main", "log"));
 | 
			
		||||
    LOG_TEE("Log start\n");
 | 
			
		||||
    log_dump_cmdline(argc, argv);
 | 
			
		||||
    llama_log_set(llama_log_callback_logTee, nullptr);
 | 
			
		||||
#endif // LOG_DISABLE_LOGS
 | 
			
		||||
 | 
			
		||||
    // TODO: Dump params ?
 | 
			
		||||
    //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
 | 
			
		||||
 | 
			
		||||
    // save choice to use color for later
 | 
			
		||||
    // (note for later: this is a slightly awkward choice)
 | 
			
		||||
    console::init(params.simple_io, params.use_color);
 | 
			
		||||
    atexit([]() { console::cleanup(); });
 | 
			
		||||
 | 
			
		||||
    if (params.logits_all) {
 | 
			
		||||
        printf("\n************\n");
 | 
			
		||||
        printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
 | 
			
		||||
        printf("************\n\n");
 | 
			
		||||
        LOG_ERR("************\n");
 | 
			
		||||
        LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
 | 
			
		||||
        LOG_ERR("************\n\n");
 | 
			
		||||
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.embedding) {
 | 
			
		||||
        printf("\n************\n");
 | 
			
		||||
        printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
 | 
			
		||||
        printf("************\n\n");
 | 
			
		||||
        LOG_ERR("************\n");
 | 
			
		||||
        LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
 | 
			
		||||
        LOG_ERR("************\n\n");
 | 
			
		||||
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.n_ctx != 0 && params.n_ctx < 8) {
 | 
			
		||||
        LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
 | 
			
		||||
        LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
 | 
			
		||||
        params.n_ctx = 8;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.rope_freq_base != 0.0) {
 | 
			
		||||
        LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
 | 
			
		||||
        LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.rope_freq_scale != 0.0) {
 | 
			
		||||
        LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
 | 
			
		||||
        LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    print_build_info();
 | 
			
		||||
    LOG_INF("%s: llama backend init\n", __func__);
 | 
			
		||||
 | 
			
		||||
    LOG("%s: llama backend init\n", __func__);
 | 
			
		||||
    llama_backend_init();
 | 
			
		||||
    llama_numa_init(params.numa);
 | 
			
		||||
 | 
			
		||||
    llama_model * model = nullptr;
 | 
			
		||||
    llama_context * ctx = nullptr;
 | 
			
		||||
    gpt_sampler * smpl = nullptr;
 | 
			
		||||
    common_sampler * smpl = nullptr;
 | 
			
		||||
 | 
			
		||||
    std::vector<llama_chat_msg> chat_msgs;
 | 
			
		||||
    std::vector<common_chat_msg> chat_msgs;
 | 
			
		||||
 | 
			
		||||
    g_model = &model;
 | 
			
		||||
    g_ctx = &ctx;
 | 
			
		||||
    g_smpl = &smpl;
 | 
			
		||||
 | 
			
		||||
    // load the model and apply lora adapter, if any
 | 
			
		||||
    LOG("%s: load the model and apply lora adapter, if any\n", __func__);
 | 
			
		||||
    llama_init_result llama_init = llama_init_from_gpt_params(params);
 | 
			
		||||
    LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
 | 
			
		||||
    common_init_result llama_init = common_init_from_params(params);
 | 
			
		||||
 | 
			
		||||
    model = llama_init.model;
 | 
			
		||||
    ctx = llama_init.context;
 | 
			
		||||
 | 
			
		||||
    if (model == NULL) {
 | 
			
		||||
        LOG_TEE("%s: error: unable to load model\n", __func__);
 | 
			
		||||
        LOG_ERR("%s: error: unable to load model\n", __func__);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    LOG("%s: llama threadpool init = n_threads = %d\n",
 | 
			
		||||
        __func__,
 | 
			
		||||
        (int) params.cpuparams.n_threads
 | 
			
		||||
    );
 | 
			
		||||
    LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
 | 
			
		||||
 | 
			
		||||
    struct ggml_threadpool_params tpp_batch =
 | 
			
		||||
            ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
 | 
			
		||||
    struct ggml_threadpool_params tpp =
 | 
			
		||||
@@ -232,8 +220,8 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
 | 
			
		||||
        threadpool_batch = ggml_threadpool_new(&tpp_batch);
 | 
			
		||||
        if (!threadpool_batch) {
 | 
			
		||||
            LOG_TEE("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
 | 
			
		||||
            exit(1);
 | 
			
		||||
            LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Start the non-batch threadpool in the paused state
 | 
			
		||||
@@ -242,55 +230,54 @@ int main(int argc, char ** argv) {
 | 
			
		||||
 | 
			
		||||
    struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp);
 | 
			
		||||
    if (!threadpool) {
 | 
			
		||||
        LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
 | 
			
		||||
        exit(1);
 | 
			
		||||
        LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    llama_attach_threadpool(ctx, threadpool, threadpool_batch);
 | 
			
		||||
 | 
			
		||||
    const int n_ctx_train = llama_n_ctx_train(model);
 | 
			
		||||
    const int n_ctx = llama_n_ctx(ctx);
 | 
			
		||||
    LOG("n_ctx: %d\n", n_ctx);
 | 
			
		||||
 | 
			
		||||
    if (n_ctx > n_ctx_train) {
 | 
			
		||||
        LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
 | 
			
		||||
                __func__, n_ctx_train, n_ctx);
 | 
			
		||||
        LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // print chat template example in conversation mode
 | 
			
		||||
    if (params.conversation) {
 | 
			
		||||
        if (params.enable_chat_template) {
 | 
			
		||||
            LOG_TEE("%s: chat template example: %s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
 | 
			
		||||
            LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
 | 
			
		||||
        } else {
 | 
			
		||||
            LOG_TEE("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
 | 
			
		||||
            LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // print system information
 | 
			
		||||
    {
 | 
			
		||||
        LOG_TEE("\n");
 | 
			
		||||
        LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
 | 
			
		||||
        LOG_INF("\n");
 | 
			
		||||
        LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | 
			
		||||
        LOG_INF("\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::string path_session = params.path_prompt_cache;
 | 
			
		||||
    std::vector<llama_token> session_tokens;
 | 
			
		||||
 | 
			
		||||
    if (!path_session.empty()) {
 | 
			
		||||
        LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
 | 
			
		||||
        LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
 | 
			
		||||
        if (!file_exists(path_session)) {
 | 
			
		||||
            LOG_TEE("%s: session file does not exist, will create.\n", __func__);
 | 
			
		||||
            LOG_INF("%s: session file does not exist, will create.\n", __func__);
 | 
			
		||||
        } else if (file_is_empty(path_session)) {
 | 
			
		||||
            LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
 | 
			
		||||
            LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
 | 
			
		||||
        } else {
 | 
			
		||||
            // The file exists and is not empty
 | 
			
		||||
            session_tokens.resize(n_ctx);
 | 
			
		||||
            size_t n_token_count_out = 0;
 | 
			
		||||
            if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
 | 
			
		||||
                LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
 | 
			
		||||
                LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
 | 
			
		||||
                return 1;
 | 
			
		||||
            }
 | 
			
		||||
            session_tokens.resize(n_token_count_out);
 | 
			
		||||
            LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
 | 
			
		||||
            LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -298,7 +285,8 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    if (!llama_model_has_encoder(model)) {
 | 
			
		||||
        GGML_ASSERT(!llama_add_eos_token(model));
 | 
			
		||||
    }
 | 
			
		||||
    LOG("add_bos: %d\n", add_bos);
 | 
			
		||||
 | 
			
		||||
    LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
 | 
			
		||||
 | 
			
		||||
    std::vector<llama_token> embd_inp;
 | 
			
		||||
 | 
			
		||||
@@ -307,31 +295,31 @@ int main(int argc, char ** argv) {
 | 
			
		||||
            ? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
 | 
			
		||||
            : params.prompt;
 | 
			
		||||
        if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
 | 
			
		||||
            LOG("tokenize the prompt\n");
 | 
			
		||||
            embd_inp = ::llama_tokenize(ctx, prompt, true, true);
 | 
			
		||||
            LOG_DBG("tokenize the prompt\n");
 | 
			
		||||
            embd_inp = common_tokenize(ctx, prompt, true, true);
 | 
			
		||||
        } else {
 | 
			
		||||
            LOG("use session tokens\n");
 | 
			
		||||
            LOG_DBG("use session tokens\n");
 | 
			
		||||
            embd_inp = session_tokens;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        LOG("prompt: \"%s\"\n", log_tostr(prompt));
 | 
			
		||||
        LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
 | 
			
		||||
        LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
 | 
			
		||||
        LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Should not run without any tokens
 | 
			
		||||
    if (embd_inp.empty()) {
 | 
			
		||||
        if (add_bos) {
 | 
			
		||||
            embd_inp.push_back(llama_token_bos(model));
 | 
			
		||||
            LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
 | 
			
		||||
            LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
 | 
			
		||||
        } else {
 | 
			
		||||
            LOG_TEE("error: input is empty\n");
 | 
			
		||||
            LOG_ERR("input is empty\n");
 | 
			
		||||
            return -1;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Tokenize negative prompt
 | 
			
		||||
    if ((int) embd_inp.size() > n_ctx - 4) {
 | 
			
		||||
        LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
 | 
			
		||||
        LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -349,26 +337,25 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        n_matching_session_tokens = llama_past_seq_rm(ctx, -1, n_matching_session_tokens, -1);
 | 
			
		||||
 | 
			
		||||
        if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
 | 
			
		||||
            LOG_TEE("%s: using full prompt from session file\n", __func__);
 | 
			
		||||
            LOG_INF("%s: using full prompt from session file\n", __func__);
 | 
			
		||||
        } else if (n_matching_session_tokens >= embd_inp.size()) {
 | 
			
		||||
            LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
 | 
			
		||||
            LOG_INF("%s: session file has exact match for prompt!\n", __func__);
 | 
			
		||||
        } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
 | 
			
		||||
            LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
 | 
			
		||||
                __func__, n_matching_session_tokens, embd_inp.size());
 | 
			
		||||
            LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
 | 
			
		||||
                    __func__, n_matching_session_tokens, embd_inp.size());
 | 
			
		||||
        } else {
 | 
			
		||||
            LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
 | 
			
		||||
                __func__, n_matching_session_tokens, embd_inp.size());
 | 
			
		||||
            LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
 | 
			
		||||
                    __func__, n_matching_session_tokens, embd_inp.size());
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    LOGLN(
 | 
			
		||||
            "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu",
 | 
			
		||||
            log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
 | 
			
		||||
    LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
 | 
			
		||||
         embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
 | 
			
		||||
 | 
			
		||||
    // if we will use the cache for the full prompt without reaching the end of the cache, force
 | 
			
		||||
    // reevaluation of the last token to recalculate the cached logits
 | 
			
		||||
    if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
 | 
			
		||||
        LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
 | 
			
		||||
        LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
 | 
			
		||||
 | 
			
		||||
        session_tokens.resize(embd_inp.size() - 1);
 | 
			
		||||
    } else {
 | 
			
		||||
@@ -392,21 +379,20 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.verbose_prompt) {
 | 
			
		||||
        LOG_TEE("\n");
 | 
			
		||||
        LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | 
			
		||||
        LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | 
			
		||||
        LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | 
			
		||||
        LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | 
			
		||||
        for (int i = 0; i < (int) embd_inp.size(); i++) {
 | 
			
		||||
            LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
 | 
			
		||||
            LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (params.n_keep > add_bos) {
 | 
			
		||||
            LOG_TEE("%s: static prompt based on n_keep: '", __func__);
 | 
			
		||||
            LOG_INF("%s: static prompt based on n_keep: '", __func__);
 | 
			
		||||
            for (int i = 0; i < params.n_keep; i++) {
 | 
			
		||||
                LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
 | 
			
		||||
                LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
 | 
			
		||||
            }
 | 
			
		||||
            LOG_TEE("'\n");
 | 
			
		||||
            LOG_CNT("'\n");
 | 
			
		||||
        }
 | 
			
		||||
        LOG_TEE("\n");
 | 
			
		||||
        LOG_INF("\n");
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // ctrl+C handling
 | 
			
		||||
@@ -426,56 +412,56 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (params.interactive) {
 | 
			
		||||
        LOG_TEE("%s: interactive mode on.\n", __func__);
 | 
			
		||||
        LOG_INF("%s: interactive mode on.\n", __func__);
 | 
			
		||||
 | 
			
		||||
        if (!params.antiprompt.empty()) {
 | 
			
		||||
            for (const auto & antiprompt : params.antiprompt) {
 | 
			
		||||
                LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
 | 
			
		||||
                LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
 | 
			
		||||
                if (params.verbose_prompt) {
 | 
			
		||||
                    auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
 | 
			
		||||
                    auto tmp = common_tokenize(ctx, antiprompt, false, true);
 | 
			
		||||
                    for (int i = 0; i < (int) tmp.size(); i++) {
 | 
			
		||||
                        LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
 | 
			
		||||
                        LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (params.input_prefix_bos) {
 | 
			
		||||
            LOG_TEE("Input prefix with BOS\n");
 | 
			
		||||
            LOG_INF("Input prefix with BOS\n");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (!params.input_prefix.empty()) {
 | 
			
		||||
            LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
 | 
			
		||||
            LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
 | 
			
		||||
            if (params.verbose_prompt) {
 | 
			
		||||
                auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
 | 
			
		||||
                auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
 | 
			
		||||
                for (int i = 0; i < (int) tmp.size(); i++) {
 | 
			
		||||
                    LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
 | 
			
		||||
                    LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (!params.input_suffix.empty()) {
 | 
			
		||||
            LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
 | 
			
		||||
            LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
 | 
			
		||||
            if (params.verbose_prompt) {
 | 
			
		||||
                auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
 | 
			
		||||
                auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
 | 
			
		||||
                for (int i = 0; i < (int) tmp.size(); i++) {
 | 
			
		||||
                    LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
 | 
			
		||||
                    LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    smpl = gpt_sampler_init(model, sparams);
 | 
			
		||||
    smpl = common_sampler_init(model, sparams);
 | 
			
		||||
    if (!smpl) {
 | 
			
		||||
        fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
 | 
			
		||||
        exit(1);
 | 
			
		||||
        LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
 | 
			
		||||
    LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
 | 
			
		||||
    LOG_TEE("sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
 | 
			
		||||
    LOG_INF("sampler seed: %u\n",     common_sampler_get_seed(smpl));
 | 
			
		||||
    LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
 | 
			
		||||
    LOG_INF("sampler chain: %s\n",    common_sampler_print(smpl).c_str());
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
 | 
			
		||||
    LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
 | 
			
		||||
 | 
			
		||||
    // group-attention state
 | 
			
		||||
    // number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
 | 
			
		||||
@@ -489,9 +475,9 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        GGML_ASSERT(ga_w % ga_n == 0            && "grp_attn_w must be a multiple of grp_attn_n");     // NOLINT
 | 
			
		||||
      //GGML_ASSERT(n_ctx_train % ga_w == 0     && "n_ctx_train must be a multiple of grp_attn_w");    // NOLINT
 | 
			
		||||
      //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
 | 
			
		||||
        LOG_TEE("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
 | 
			
		||||
        LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
 | 
			
		||||
    }
 | 
			
		||||
    LOG_TEE("\n\n");
 | 
			
		||||
    LOG_INF("\n");
 | 
			
		||||
 | 
			
		||||
    if (params.interactive) {
 | 
			
		||||
        const char * control_message;
 | 
			
		||||
@@ -503,11 +489,11 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                              " - To return control without starting a new line, end your input with '/'.\n"
 | 
			
		||||
                              " - If you want to submit another line, end your input with '\\'.\n";
 | 
			
		||||
        }
 | 
			
		||||
        LOG_TEE("== Running in interactive mode. ==\n");
 | 
			
		||||
        LOG_INF("== Running in interactive mode. ==\n");
 | 
			
		||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | 
			
		||||
        LOG_TEE(       " - Press Ctrl+C to interject at any time.\n");
 | 
			
		||||
        LOG_INF(       " - Press Ctrl+C to interject at any time.\n");
 | 
			
		||||
#endif
 | 
			
		||||
        LOG_TEE(       "%s\n", control_message);
 | 
			
		||||
        LOG_INF(       "%s\n", control_message);
 | 
			
		||||
 | 
			
		||||
        is_interacting = params.interactive_first;
 | 
			
		||||
    }
 | 
			
		||||
@@ -538,7 +524,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
 | 
			
		||||
    antiprompt_ids.reserve(params.antiprompt.size());
 | 
			
		||||
    for (const std::string & antiprompt : params.antiprompt) {
 | 
			
		||||
        antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
 | 
			
		||||
        antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (llama_model_has_encoder(model)) {
 | 
			
		||||
@@ -546,7 +532,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        llama_token * enc_input_buf = embd_inp.data();
 | 
			
		||||
 | 
			
		||||
        if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size, 0, 0))) {
 | 
			
		||||
            LOG_TEE("%s : failed to eval\n", __func__);
 | 
			
		||||
            LOG_ERR("%s : failed to eval\n", __func__);
 | 
			
		||||
            return 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
@@ -572,9 +558,8 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                embd.resize(max_embd_size);
 | 
			
		||||
 | 
			
		||||
                console::set_display(console::error);
 | 
			
		||||
                printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
 | 
			
		||||
                LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
 | 
			
		||||
                console::set_display(console::reset);
 | 
			
		||||
                fflush(stdout);
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (ga_n == 1) {
 | 
			
		||||
@@ -582,29 +567,35 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                // if we run out of context:
 | 
			
		||||
                // - take the n_keep first tokens from the original prompt (via n_past)
 | 
			
		||||
                // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
 | 
			
		||||
 | 
			
		||||
                if (n_past + (int) embd.size() >= n_ctx) {
 | 
			
		||||
                    if (params.n_predict == -2) {
 | 
			
		||||
                        LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
 | 
			
		||||
                    if (!params.ctx_shift){
 | 
			
		||||
                        LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
 | 
			
		||||
                        break;
 | 
			
		||||
                    } else {
 | 
			
		||||
                        if (params.n_predict == -2) {
 | 
			
		||||
                            LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
 | 
			
		||||
                            break;
 | 
			
		||||
                        }
 | 
			
		||||
 | 
			
		||||
                        const int n_left    = n_past - params.n_keep;
 | 
			
		||||
                        const int n_discard = n_left/2;
 | 
			
		||||
 | 
			
		||||
                        LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
 | 
			
		||||
                                n_past, n_left, n_ctx, params.n_keep, n_discard);
 | 
			
		||||
 | 
			
		||||
                        llama_kv_cache_seq_rm (ctx, 0, params.n_keep            , params.n_keep + n_discard);
 | 
			
		||||
                        llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
 | 
			
		||||
 | 
			
		||||
                        n_past -= n_discard;
 | 
			
		||||
 | 
			
		||||
                        LOG_DBG("after swap: n_past = %d\n", n_past);
 | 
			
		||||
 | 
			
		||||
                        LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
 | 
			
		||||
 | 
			
		||||
                        LOG_DBG("clear session path\n");
 | 
			
		||||
                        path_session.clear();
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    const int n_left    = n_past - params.n_keep;
 | 
			
		||||
                    const int n_discard = n_left/2;
 | 
			
		||||
 | 
			
		||||
                    LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
 | 
			
		||||
                            n_past, n_left, n_ctx, params.n_keep, n_discard);
 | 
			
		||||
 | 
			
		||||
                    llama_past_seq_rm (ctx, 0, params.n_keep            , params.n_keep + n_discard);
 | 
			
		||||
                    llama_past_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
 | 
			
		||||
 | 
			
		||||
                    n_past -= n_discard;
 | 
			
		||||
 | 
			
		||||
                    LOG("after swap: n_past = %d\n", n_past);
 | 
			
		||||
 | 
			
		||||
                    LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
 | 
			
		||||
 | 
			
		||||
                    LOG("clear session path\n");
 | 
			
		||||
                    path_session.clear();
 | 
			
		||||
                }
 | 
			
		||||
            } else {
 | 
			
		||||
                // context extension via Self-Extend
 | 
			
		||||
@@ -613,10 +604,10 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                    const int bd = (ga_w/ga_n)*(ga_n - 1);
 | 
			
		||||
                    const int dd = (ga_w/ga_n) - ib*bd - ga_w;
 | 
			
		||||
 | 
			
		||||
                    LOG("\n");
 | 
			
		||||
                    LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
 | 
			
		||||
                    LOG("div:   [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
 | 
			
		||||
                    LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
 | 
			
		||||
                    LOG_DBG("\n");
 | 
			
		||||
                    LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
 | 
			
		||||
                    LOG_DBG("div:   [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
 | 
			
		||||
                    LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
 | 
			
		||||
 | 
			
		||||
                    llama_past_seq_add(ctx, 0, ga_i,                n_past,              ib*bd);
 | 
			
		||||
                    llama_past_seq_div(ctx, 0, ga_i + ib*bd,        ga_i + ib*bd + ga_w, ga_n);
 | 
			
		||||
@@ -626,7 +617,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
 | 
			
		||||
                    ga_i += ga_w/ga_n;
 | 
			
		||||
 | 
			
		||||
                    LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
 | 
			
		||||
                    LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
@@ -660,19 +651,19 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                    n_eval = params.n_batch;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
 | 
			
		||||
                LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
 | 
			
		||||
 | 
			
		||||
                if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
 | 
			
		||||
                    LOG_TEE("%s : failed to eval\n", __func__);
 | 
			
		||||
                    LOG_ERR("%s : failed to eval\n", __func__);
 | 
			
		||||
                    return 1;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                n_past += n_eval;
 | 
			
		||||
 | 
			
		||||
                LOG("n_past = %d\n", n_past);
 | 
			
		||||
                LOG_DBG("n_past = %d\n", n_past);
 | 
			
		||||
                // Display total tokens alongside total time
 | 
			
		||||
                if (params.n_print > 0 && n_past % params.n_print == 0) {
 | 
			
		||||
                    LOG_TEE("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
 | 
			
		||||
                    LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
@@ -690,14 +681,14 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                need_to_save_session = false;
 | 
			
		||||
                llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
 | 
			
		||||
 | 
			
		||||
                LOG("saved session to %s\n", path_session.c_str());
 | 
			
		||||
                LOG_DBG("saved session to %s\n", path_session.c_str());
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
 | 
			
		||||
            const llama_token id = common_sampler_sample(smpl, ctx, -1);
 | 
			
		||||
 | 
			
		||||
            gpt_sampler_accept(smpl, id, /* apply_grammar= */ true);
 | 
			
		||||
            common_sampler_accept(smpl, id, /* accept_grammar= */ true);
 | 
			
		||||
 | 
			
		||||
            // LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
 | 
			
		||||
            // LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
 | 
			
		||||
 | 
			
		||||
            embd.push_back(id);
 | 
			
		||||
 | 
			
		||||
@@ -707,16 +698,16 @@ int main(int argc, char ** argv) {
 | 
			
		||||
            // decrement remaining sampling budget
 | 
			
		||||
            --n_remain;
 | 
			
		||||
 | 
			
		||||
            LOG("n_remain: %d\n", n_remain);
 | 
			
		||||
            LOG_DBG("n_remain: %d\n", n_remain);
 | 
			
		||||
        } else {
 | 
			
		||||
            // some user input remains from prompt or interaction, forward it to processing
 | 
			
		||||
            LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
 | 
			
		||||
            LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
 | 
			
		||||
            while ((int) embd_inp.size() > n_consumed) {
 | 
			
		||||
                embd.push_back(embd_inp[n_consumed]);
 | 
			
		||||
 | 
			
		||||
                // push the prompt in the sampling context in order to apply repetition penalties later
 | 
			
		||||
                // for the prompt, we don't apply grammar rules
 | 
			
		||||
                gpt_sampler_accept(smpl, embd_inp[n_consumed], /* apply_grammar= */ false);
 | 
			
		||||
                common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
 | 
			
		||||
 | 
			
		||||
                ++n_consumed;
 | 
			
		||||
                if ((int) embd.size() >= params.n_batch) {
 | 
			
		||||
@@ -728,10 +719,10 @@ int main(int argc, char ** argv) {
 | 
			
		||||
        // display text
 | 
			
		||||
        if (input_echo && display) {
 | 
			
		||||
            for (auto id : embd) {
 | 
			
		||||
                const std::string token_str = llama_token_to_piece(ctx, id, params.special);
 | 
			
		||||
                const std::string token_str = common_token_to_piece(ctx, id, params.special);
 | 
			
		||||
 | 
			
		||||
                // Console/Stream Output
 | 
			
		||||
                fprintf(stdout, "%s", token_str.c_str());
 | 
			
		||||
                LOG("%s", token_str.c_str());
 | 
			
		||||
 | 
			
		||||
                // Record Displayed Tokens To Log
 | 
			
		||||
                // Note: Generated tokens are created one by one hence this check
 | 
			
		||||
@@ -743,8 +734,6 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                    output_tokens.push_back(id);
 | 
			
		||||
                    output_ss << token_str;
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                fflush(stdout);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
@@ -759,7 +748,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
            // check for reverse prompt in the last n_prev tokens
 | 
			
		||||
            if (!params.antiprompt.empty()) {
 | 
			
		||||
                const int n_prev = 32;
 | 
			
		||||
                const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev);
 | 
			
		||||
                const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
 | 
			
		||||
 | 
			
		||||
                is_antiprompt = false;
 | 
			
		||||
                // Check if each of the reverse prompts appears at the end of the output.
 | 
			
		||||
@@ -781,7 +770,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                // check for reverse prompt using special tokens
 | 
			
		||||
                llama_token last_token = gpt_sampler_last(smpl);
 | 
			
		||||
                llama_token last_token = common_sampler_last(smpl);
 | 
			
		||||
                for (std::vector<llama_token> ids : antiprompt_ids) {
 | 
			
		||||
                    if (ids.size() == 1 && last_token == ids[0]) {
 | 
			
		||||
                        if (params.interactive) {
 | 
			
		||||
@@ -793,18 +782,18 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                if (is_antiprompt) {
 | 
			
		||||
                    LOG("found antiprompt: %s\n", last_output.c_str());
 | 
			
		||||
                    LOG_DBG("found antiprompt: %s\n", last_output.c_str());
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // deal with end of generation tokens in interactive mode
 | 
			
		||||
            if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
 | 
			
		||||
                LOG("found an EOG token\n");
 | 
			
		||||
            if (llama_token_is_eog(model, common_sampler_last(smpl))) {
 | 
			
		||||
                LOG_DBG("found an EOG token\n");
 | 
			
		||||
 | 
			
		||||
                if (params.interactive) {
 | 
			
		||||
                    if (!params.antiprompt.empty()) {
 | 
			
		||||
                        // tokenize and inject first reverse prompt
 | 
			
		||||
                        const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
 | 
			
		||||
                        const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
 | 
			
		||||
                        embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
 | 
			
		||||
                        is_antiprompt = true;
 | 
			
		||||
                    }
 | 
			
		||||
@@ -813,32 +802,32 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                        chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
 | 
			
		||||
                    }
 | 
			
		||||
                    is_interacting = true;
 | 
			
		||||
                    printf("\n");
 | 
			
		||||
                    LOG("\n");
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // if current token is not EOG, we add it to current assistant message
 | 
			
		||||
            if (params.conversation) {
 | 
			
		||||
                const auto id = gpt_sampler_last(smpl);
 | 
			
		||||
                assistant_ss << llama_token_to_piece(ctx, id, false);
 | 
			
		||||
                const auto id = common_sampler_last(smpl);
 | 
			
		||||
                assistant_ss << common_token_to_piece(ctx, id, false);
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (n_past > 0 && is_interacting) {
 | 
			
		||||
                LOG("waiting for user input\n");
 | 
			
		||||
                LOG_DBG("waiting for user input\n");
 | 
			
		||||
 | 
			
		||||
                if (params.conversation) {
 | 
			
		||||
                    printf("\n> ");
 | 
			
		||||
                    LOG("\n> ");
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                if (params.input_prefix_bos) {
 | 
			
		||||
                    LOG("adding input prefix BOS token\n");
 | 
			
		||||
                    LOG_DBG("adding input prefix BOS token\n");
 | 
			
		||||
                    embd_inp.push_back(llama_token_bos(model));
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                std::string buffer;
 | 
			
		||||
                if (!params.input_prefix.empty() && !params.conversation) {
 | 
			
		||||
                    LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
 | 
			
		||||
                    printf("%s", params.input_prefix.c_str());
 | 
			
		||||
                    LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
 | 
			
		||||
                    LOG("%s", params.input_prefix.c_str());
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                // color user input only
 | 
			
		||||
@@ -861,11 +850,11 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                if (buffer.length() > 1) {
 | 
			
		||||
                    // append input suffix if any
 | 
			
		||||
                    if (!params.input_suffix.empty() && !params.conversation) {
 | 
			
		||||
                        LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
 | 
			
		||||
                        printf("%s", params.input_suffix.c_str());
 | 
			
		||||
                        LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
 | 
			
		||||
                        LOG("%s", params.input_suffix.c_str());
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    LOG("buffer: '%s'\n", buffer.c_str());
 | 
			
		||||
                    LOG_DBG("buffer: '%s'\n", buffer.c_str());
 | 
			
		||||
 | 
			
		||||
                    const size_t original_size = embd_inp.size();
 | 
			
		||||
 | 
			
		||||
@@ -878,11 +867,11 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                        ? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
 | 
			
		||||
                        : std::move(buffer);
 | 
			
		||||
                    // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
 | 
			
		||||
                    const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
 | 
			
		||||
                    const auto line_inp = ::llama_tokenize(ctx, user_inp,            false, format_chat);
 | 
			
		||||
                    const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
 | 
			
		||||
                    const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
 | 
			
		||||
                    const auto line_inp = common_tokenize(ctx, user_inp,            false, format_chat);
 | 
			
		||||
                    const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
 | 
			
		||||
 | 
			
		||||
                    LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
 | 
			
		||||
                    LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
 | 
			
		||||
 | 
			
		||||
                    // if user stop generation mid-way, we must add EOT to finish model's last response
 | 
			
		||||
                    if (need_insert_eot && format_chat) {
 | 
			
		||||
@@ -898,16 +887,16 @@ int main(int argc, char ** argv) {
 | 
			
		||||
                    for (size_t i = original_size; i < embd_inp.size(); ++i) {
 | 
			
		||||
                        const llama_token token = embd_inp[i];
 | 
			
		||||
                        output_tokens.push_back(token);
 | 
			
		||||
                        output_ss << llama_token_to_piece(ctx, token);
 | 
			
		||||
                        output_ss << common_token_to_piece(ctx, token);
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                    // reset assistant message
 | 
			
		||||
                    assistant_ss.str("");
 | 
			
		||||
 | 
			
		||||
                    n_remain -= line_inp.size();
 | 
			
		||||
                    LOG("n_remain: %d\n", n_remain);
 | 
			
		||||
                    LOG_DBG("n_remain: %d\n", n_remain);
 | 
			
		||||
                } else {
 | 
			
		||||
                    LOG("empty line, passing control back\n");
 | 
			
		||||
                    LOG_DBG("empty line, passing control back\n");
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                input_echo = false; // do not echo this again
 | 
			
		||||
@@ -915,7 +904,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
 | 
			
		||||
            if (n_past > 0) {
 | 
			
		||||
                if (is_interacting) {
 | 
			
		||||
                    gpt_sampler_reset(smpl);
 | 
			
		||||
                    common_sampler_reset(smpl);
 | 
			
		||||
                }
 | 
			
		||||
                is_interacting = false;
 | 
			
		||||
            }
 | 
			
		||||
@@ -923,7 +912,7 @@ int main(int argc, char ** argv) {
 | 
			
		||||
 | 
			
		||||
        // end of generation
 | 
			
		||||
        if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) {
 | 
			
		||||
            LOG_TEE(" [end of text]\n");
 | 
			
		||||
            LOG(" [end of text]\n");
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
@@ -936,15 +925,15 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
 | 
			
		||||
        LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
 | 
			
		||||
        LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
 | 
			
		||||
        llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    LOG_TEE("\n");
 | 
			
		||||
    gpt_perf_print(ctx, smpl);
 | 
			
		||||
    LOG("\n\n");
 | 
			
		||||
    common_perf_print(ctx, smpl);
 | 
			
		||||
    write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
 | 
			
		||||
 | 
			
		||||
    gpt_sampler_free(smpl);
 | 
			
		||||
    common_sampler_free(smpl);
 | 
			
		||||
 | 
			
		||||
    llama_free(ctx);
 | 
			
		||||
    llama_free_model(model);
 | 
			
		||||
@@ -954,9 +943,5 @@ int main(int argc, char ** argv) {
 | 
			
		||||
    ggml_threadpool_free(threadpool);
 | 
			
		||||
    ggml_threadpool_free(threadpool_batch);
 | 
			
		||||
 | 
			
		||||
#ifndef LOG_DISABLE_LOGS
 | 
			
		||||
    LOG_TEE("Log end\n");
 | 
			
		||||
#endif // LOG_DISABLE_LOGS
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user