mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-05 09:36:52 +00:00
Merge branch 'master' into compilade/refactor-kv-cache
Also begin reverting some implicit state rollback code.
This commit is contained in:
@@ -2,6 +2,7 @@
|
||||
#include "common.h"
|
||||
#include "console.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
@@ -34,8 +35,8 @@
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static gpt_sampler ** g_smpl;
|
||||
static gpt_params * g_params;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
@@ -43,7 +44,7 @@ static std::vector<llama_token> * g_output_tokens;
|
||||
static bool is_interacting = false;
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const llama_context * ctx, const common_params & params, const llama_model * model,
|
||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||
const std::vector<llama_token> & output_tokens
|
||||
) {
|
||||
@@ -55,7 +56,7 @@ static void write_logfile(
|
||||
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
LOG_ERR("%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
return;
|
||||
}
|
||||
@@ -64,7 +65,7 @@ static void write_logfile(
|
||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||
|
||||
if (logfile == NULL) {
|
||||
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -93,9 +94,14 @@ static void sigint_handler(int signo) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
printf("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
LOG("\n");
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
}
|
||||
@@ -103,114 +109,107 @@ static void sigint_handler(int signo) {
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
common_init();
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("infill", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
log_dump_cmdline(argc, argv);
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
||||
if (params.logits_all) {
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
printf("************\n\n");
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.embedding) {
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
printf("************\n\n");
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||
printf("\n************\n");
|
||||
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||
printf("************\n\n");
|
||||
LOG_ERR("\n************\n");
|
||||
LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||
LOG_ERR("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 0.0) {
|
||||
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 0.0) {
|
||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
LOG_INF("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
gpt_sampler * smpl = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_TEE("%s: error: unable to load model\n", __func__);
|
||||
LOG_ERR("%s: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG("n_ctx: %d\n", n_ctx);
|
||||
LOG_DBG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
GGML_ASSERT(llama_token_prefix(model) >= 0);
|
||||
GGML_ASSERT(llama_token_suffix(model) >= 0);
|
||||
GGML_ASSERT(llama_token_fim_pre(model) >= 0);
|
||||
GGML_ASSERT(llama_token_fim_suf(model) >= 0);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
@@ -219,23 +218,24 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
const llama_token middle_token = llama_token_fim_mid(model);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
|
||||
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
LOG_DBG("add_bos: %d\n", add_bos);
|
||||
LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
|
||||
LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
|
||||
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -244,9 +244,8 @@ int main(int argc, char ** argv) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
|
||||
LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
@@ -254,21 +253,21 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_TEE("'\n");
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
LOG_TEE("\n");
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
@@ -285,28 +284,30 @@ int main(int argc, char ** argv) {
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||
LOG_INF("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG_TEE("Input prefix with BOS\n");
|
||||
LOG_INF("Input prefix with BOS\n");
|
||||
}
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
|
||||
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("\n##### Infill mode #####\n\n");
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
@@ -317,11 +318,11 @@ int main(int argc, char ** argv) {
|
||||
" - To return control without starting a new line, end your input with '/'.\n"
|
||||
" - If you want to submit another line, end your input with '\\'.\n";
|
||||
}
|
||||
LOG_TEE("== Running in interactive mode. ==\n");
|
||||
LOG_INF("== Running in interactive mode. ==\n");
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
||||
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG_TEE( "%s\n", control_message);
|
||||
LOG_INF( "%s\n", control_message);
|
||||
|
||||
is_interacting = params.interactive_first;
|
||||
}
|
||||
@@ -354,9 +355,8 @@ int main(int argc, char ** argv) {
|
||||
embd.resize(max_embd_size);
|
||||
|
||||
console::set_display(console::error);
|
||||
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console::set_display(console::reset);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
// infinite text generation via context swapping
|
||||
@@ -365,14 +365,14 @@ int main(int argc, char ** argv) {
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_past_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
@@ -380,9 +380,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG("after swap: n_past = %d\n", n_past);
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
}
|
||||
|
||||
@@ -394,16 +394,16 @@ int main(int argc, char ** argv) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past += n_eval;
|
||||
|
||||
LOG("n_past = %d\n", n_past);
|
||||
LOG_DBG("n_past = %d\n", n_past);
|
||||
}
|
||||
|
||||
}
|
||||
@@ -411,11 +411,11 @@ int main(int argc, char ** argv) {
|
||||
embd.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
@@ -425,16 +425,16 @@ int main(int argc, char ** argv) {
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
LOG("n_remain: %d\n", n_remain);
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to processing
|
||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@@ -446,8 +446,8 @@ int main(int argc, char ** argv) {
|
||||
// display text
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
printf("%s", token_str.c_str());
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
LOG("%s", token_str.c_str());
|
||||
|
||||
if (embd.size() > 1) {
|
||||
input_tokens.push_back(id);
|
||||
@@ -456,7 +456,6 @@ int main(int argc, char ** argv) {
|
||||
output_ss << token_str;
|
||||
}
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
// reset color to default if we there is no pending user input
|
||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||
@@ -466,13 +465,12 @@ int main(int argc, char ** argv) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if ((common_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
fflush(stdout);
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
std::string buffer;
|
||||
std::string line;
|
||||
@@ -507,11 +505,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
@@ -528,35 +526,33 @@ int main(int argc, char ** argv) {
|
||||
n_remain = params.n_predict;
|
||||
n_past = 0;
|
||||
n_consumed = 0;
|
||||
// LOG_TEE("took new input\n");
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
LOG("found EOS token\n");
|
||||
else if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
|
||||
is_interacting = true;
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||
LOG("waiting for user input\n");
|
||||
LOG_DBG("waiting for user input\n");
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
LOG("adding input prefix BOS token\n");
|
||||
LOG_DBG("adding input prefix BOS token\n");
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
buffer += params.input_prefix;
|
||||
printf("%s", buffer.c_str());
|
||||
LOG("%s", buffer.c_str());
|
||||
}
|
||||
|
||||
std::string line;
|
||||
@@ -574,30 +570,30 @@ int main(int argc, char ** argv) {
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
buffer += params.input_suffix;
|
||||
printf("%s", params.input_suffix.c_str());
|
||||
LOG("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
LOG("buffer: '%s'\n", buffer.c_str());
|
||||
LOG_DBG("buffer: '%s'\n", buffer.c_str());
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
const auto line_inp = common_tokenize(ctx, buffer, false);
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << llama_token_to_piece(ctx, token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
LOG("n_remain: %d\n", n_remain);
|
||||
LOG_DBG("n_remain: %d\n", n_remain);
|
||||
} else {
|
||||
LOG("empty line, passing control back\n");
|
||||
LOG_DBG("empty line, passing control back\n");
|
||||
}
|
||||
|
||||
input_echo = false; // do not echo this again
|
||||
@@ -605,7 +601,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
gpt_sampler_reset(smpl);
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@@ -624,23 +620,18 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
fflush(stdout);
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
LOG("\n");
|
||||
common_perf_print(ctx, smpl);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
LOG_TEE("Log end\n");
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user