mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-01 09:01:57 +00:00
Merge branch 'master' into compilade/refactor-kv-cache
Also begin reverting some implicit state rollback code.
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -8,21 +9,22 @@
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
// number of parallel batches
|
||||
int n_parallel = params.n_parallel;
|
||||
@@ -37,25 +39,25 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
LOG_ERR("%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
tokens_list = common_tokenize(model, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||
@@ -72,31 +74,29 @@ int main(int argc, char ** argv) {
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
LOG_ERR("%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
LOG_INF("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
|
||||
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
LOG_ERR("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
|
||||
LOG_ERR("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
LOG("\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch
|
||||
// we use this object to submit token data for decoding
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
|
||||
@@ -108,13 +108,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (size_t i = 0; i < tokens_list.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
|
||||
common_batch_add(batch, tokens_list[i], i, seq_ids, false);
|
||||
}
|
||||
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
|
||||
|
||||
if (llama_model_has_encoder(model)) {
|
||||
if (llama_encode(ctx, batch)) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -123,15 +123,15 @@ int main(int argc, char ** argv) {
|
||||
decoder_start_token_id = llama_token_bos(model);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
LOG_ERR("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -142,7 +142,7 @@ int main(int argc, char ** argv) {
|
||||
//}
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
|
||||
LOG("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
|
||||
}
|
||||
|
||||
// main loop
|
||||
@@ -161,7 +161,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
while (n_cur <= n_predict) {
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
@@ -175,9 +175,9 @@ int main(int argc, char ** argv) {
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
i_batch[i] = -1;
|
||||
LOG_TEE("\n");
|
||||
LOG("\n");
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
|
||||
LOG_INF("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
|
||||
}
|
||||
|
||||
continue;
|
||||
@@ -185,16 +185,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if there is only one stream, we print immediately to stdout
|
||||
if (n_parallel == 1) {
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
fflush(stdout);
|
||||
LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
|
||||
}
|
||||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
streams[i] += common_token_to_piece(ctx, new_token_id);
|
||||
|
||||
i_batch[i] = batch.n_tokens;
|
||||
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
common_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
@@ -208,27 +207,25 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("\n");
|
||||
LOG("\n");
|
||||
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
|
||||
LOG("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG("\n");
|
||||
llama_perf_sampler_print(smpl);
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user