vulkan: Update topk_moe fusion to handle gpt's late softmax (#16656)

* vulkan: Update topk_moe fusion to handle gpt's late softmax

Based on #16649.

* Add ggml_check_edges

* Add sync logging to show fusion effects

* handle clamp added in #16655

* Update ggml/src/ggml-impl.h

Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
Jeff Bolz
2025-10-29 08:44:29 -05:00
committed by GitHub
parent bcf5bda6f5
commit 10fcc41290
3 changed files with 275 additions and 141 deletions

View File

@@ -682,6 +682,7 @@ static inline bool ggml_can_fuse_subgraph(const struct ggml_cgraph * cgraph,
#endif
#ifdef __cplusplus
#include <array>
#include <initializer_list>
#include <vector>
@@ -697,6 +698,21 @@ inline bool ggml_can_fuse_subgraph(const struct ggml_cgraph * cgraph,
return ggml_can_fuse_subgraph(cgraph, start_idx, ops.size(), ops.begin(), outputs.begin(), outputs.size());
}
// Return true if the edges in the graph match expectations.
inline bool ggml_check_edges(const struct ggml_cgraph * cgraph,
int start_idx,
std::initializer_list<std::array<int, 3>> edges) {
for (const auto & edge : edges) {
int dst_node = edge[0];
int src_idx = edge[1];
int src_node = edge[2];
if (cgraph->nodes[start_idx + dst_node]->src[src_idx] != cgraph->nodes[start_idx + src_node]) {
return false;
}
}
return true;
}
// expose GGUF internals for test code
GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);

View File

@@ -385,12 +385,76 @@ static constexpr uint32_t num_argsort_pipelines = 11;
static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1);
static constexpr uint32_t num_topk_moe_pipelines = 10;
static constexpr std::array topk_moe_norm{ GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax_norm{ GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE };
static constexpr std::array topk_moe { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
GGML_OP_SUM_ROWS, GGML_OP_CLAMP, GGML_OP_DIV,
GGML_OP_RESHAPE };
static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
GGML_OP_VIEW, GGML_OP_GET_ROWS };
static constexpr std::initializer_list<ggml_op> topk_moe_late_softmax { GGML_OP_ARGSORT, GGML_OP_VIEW,
GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
GGML_OP_SOFT_MAX, GGML_OP_RESHAPE };
//node #978 ( SOFT_MAX): ffn_moe_probs-15 ( 0K) [Vulka ] use=2: ffn_moe_logits-15 ( 0K) [Vulka ]
//node #979 ( RESHAPE): ffn_moe_probs-15 (re ( 0K) [Vulka ] use=1: ffn_moe_probs-15 ( 0K) [Vulka ]
//node #980 ( ARGSORT): ffn_moe_argsort-15 ( 0K) [Vulka ] use=1: ffn_moe_probs-15 ( 0K) [Vulka ]
//node #981 ( VIEW): ffn_moe_topk-15 ( 0K) [Vulka ] use=4: ffn_moe_argsort-15 ( 0K) [Vulka ]
//node #982 ( GET_ROWS): ffn_moe_weights-15 ( 0K) [Vulka ] use=1: ffn_moe_probs-15 (re ( 0K) [Vulka ] ffn_moe_topk-15 ( 0K) [Vulka ]
//node #983 ( RESHAPE): ffn_moe_weights-15 ( ( 0K) [Vulka ] use=2: ffn_moe_weights-15 ( 0K) [Vulka ]
//node #984 ( SUM_ROWS): ffn_moe_weights_sum- ( 0K) [Vulka ] use=1: ffn_moe_weights-15 ( ( 0K) [Vulka ]
//node #985 ( CLAMP): ffn_moe_weights_sum_ ( 0K) [Vulka ] use=1: ffn_moe_weights_sum- ( 0K) [Vulka ]
//node #986 ( DIV): ffn_moe_weights_norm ( 0K) [Vulka ] use=1: ffn_moe_weights-15 ( ( 0K) [Vulka ] ffn_moe_weights_sum_ ( 0K) [Vulka ]
//node #987 ( RESHAPE): ffn_moe_weights_norm ( 0K) [Vulka ] use=1: ffn_moe_weights_norm ( 0K) [Vulka ]
static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softmax_norm_edges {
{ 1, 0, 0 }, // reshape->src[0] == softmax
{ 2, 0, 0 }, // argsort->src[0] == softmax
{ 3, 0, 2 }, // view->src[0] == argsort
{ 4, 0, 1 }, // get_rows->src[0] == reshape
{ 4, 1, 3 }, // get_rows->src[1] == view
{ 5, 0, 4 }, // reshape->src[0] == get_rows
{ 6, 0, 5 }, // sum_rows->src[0] == reshape
{ 7, 0, 6 }, // clamp->src[0] == sum_rows
{ 8, 0, 5 }, // div->src[0] == reshape
{ 8, 1, 7 }, // div->src[1] == clamp
{ 9, 0, 8 }, // reshape->src[0] == div
};
// same as early_softmax_norm but ending after the get_rows
static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softmax_edges {
{ 1, 0, 0 }, // reshape->src[0] == softmax
{ 2, 0, 0 }, // argsort->src[0] == softmax
{ 3, 0, 2 }, // view->src[0] == argsort
{ 4, 0, 1 }, // get_rows->src[0] == reshape
{ 4, 1, 3 }, // get_rows->src[1] == view
};
//node #652 ( ARGSORT): ffn_moe_argsort-11 ( 0K) [Vulka ] use=1: ffn_moe_probs-11 ( 0K) [Vulka ]
//node #653 ( VIEW): ffn_moe_topk-11 ( 0K) [Vulka ] use=7: ffn_moe_argsort-11 ( 0K) [Vulka ]
//node #654 ( GET_ROWS): ffn_moe_weights-11 ( 0K) [Vulka ] use=1: ffn_moe_probs-11 (re ( 0K) [Vulka ] ffn_moe_topk-11 ( 0K) [Vulka ]
//node #655 ( RESHAPE): ffn_moe_weights-11 ( ( 0K) [Vulka ] use=1: ffn_moe_weights-11 ( 0K) [Vulka ]
//node #656 ( SOFT_MAX): node_656 ( 0K) [Vulka ] use=1: ffn_moe_weights-11 ( ( 0K) [Vulka ]
//node #657 ( RESHAPE): ffn_moe_weights_soft ( 0K) [Vulka ] use=1: node_656 ( 0K) [Vulka ]
static constexpr std::initializer_list<std::array<int, 3>> topk_moe_late_softmax_edges {
{ 1, 0, 0 }, // view->src[0] == argsort
{ 2, 1, 1 }, // get_rows->src[1] == view
{ 3, 0, 2 }, // reshape->src[0] == get_rows
{ 4, 0, 3 }, // soft_max->src[0] == reshape
{ 5, 0, 4 }, // reshape->src[0] == soft_max
};
enum topk_moe_mode {
TOPK_MOE_EARLY_SOFTMAX,
TOPK_MOE_EARLY_SOFTMAX_NORM,
TOPK_MOE_LATE_SOFTMAX,
TOPK_MOE_COUNT,
};
static topk_moe_mode ggml_vk_num_additional_ops_to_topk_moe_mode(uint32_t num) {
topk_moe_mode mode = num == topk_moe_early_softmax_norm.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX_NORM :
num == topk_moe_early_softmax.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX :
TOPK_MOE_LATE_SOFTMAX;
return mode;
}
struct vk_device_struct {
std::recursive_mutex mutex;
@@ -605,8 +669,7 @@ struct vk_device_struct {
vk_pipeline pipeline_flash_attn_split_k_reduce;
// [2] is {!norm, norm}
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][2];
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][TOPK_MOE_COUNT];
std::vector<vk_pipeline_ref> all_pipelines;
@@ -954,6 +1017,8 @@ static_assert(sizeof(vk_op_multi_add_push_constants) <= 256);
struct vk_op_topk_moe_push_constants {
uint32_t n_rows;
uint32_t n_expert_used;
float clamp_min;
float clamp_max;
};
struct vk_op_add_id_push_constants {
@@ -3804,8 +3869,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][0], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][1], "topk_moe_f32_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0}, 1, true, true);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1}, 1, true, true);
}
for (auto &c : compiles) {
@@ -8083,8 +8149,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
if (ctx->num_additional_fused_ops) {
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
GGML_ASSERT(idx < num_topk_moe_pipelines);
bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1;
return ctx->device->pipeline_topk_moe[idx][with_norm];
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
return ctx->device->pipeline_topk_moe[idx][mode];
}
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
@@ -8139,6 +8205,13 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return nullptr;
}
case GGML_OP_ARGSORT:
if (ctx->num_additional_fused_ops) {
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
GGML_ASSERT(idx < num_topk_moe_pipelines);
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
return ctx->device->pipeline_topk_moe[idx][mode];
}
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
return ctx->device->pipeline_argsort_f32[idx];
@@ -9678,10 +9751,12 @@ static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& sub
static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx, bool dryrun = false) {
bool with_norm = ctx->num_additional_fused_ops == topk_moe_norm.size() - 1;
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
ggml_tensor * logits = cgraph->nodes[node_idx + 0]->src[0];
ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4];
ggml_tensor * ids = cgraph->nodes[node_idx + 3];
ggml_tensor * weights = (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) ? cgraph->nodes[node_idx + 9] :
(mode == TOPK_MOE_EARLY_SOFTMAX) ? cgraph->nodes[node_idx + 4] :
cgraph->nodes[node_idx + 5];
ggml_tensor * ids = (mode == TOPK_MOE_LATE_SOFTMAX) ? cgraph->nodes[node_idx + 1] : cgraph->nodes[node_idx + 3];
GGML_ASSERT(logits->type == GGML_TYPE_F32);
GGML_ASSERT(weights->type == GGML_TYPE_F32);
@@ -9740,9 +9815,14 @@ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx,
GGML_ASSERT(d_ids != nullptr);
}
vk_op_topk_moe_push_constants pc;
vk_op_topk_moe_push_constants pc {};
pc.n_rows = n_rows;
pc.n_expert_used = n_expert_used;
if (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) {
ggml_tensor * clamp = cgraph->nodes[node_idx + 7];
pc.clamp_min = ggml_get_op_params_f32(clamp, 0);
pc.clamp_max = ggml_get_op_params_f32(clamp, 1);
}
GGML_ASSERT(n_expert_used <= n_experts);
@@ -11337,7 +11417,13 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
}
}
}
#define ENABLE_SYNC_LOGGING 0
if (need_sync) {
#if ENABLE_SYNC_LOGGING
std::cerr << "sync" << std::endl;
#endif
ctx->unsynced_nodes_written.clear();
ctx->unsynced_nodes_read.clear();
ggml_vk_sync_buffers(ctx, compute_ctx);
@@ -11355,6 +11441,18 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
}
}
}
#if ENABLE_SYNC_LOGGING
if (!dryrun) {
for (int i = 0; i < ctx->num_additional_fused_ops + 1; ++i) {
auto *n = cgraph->nodes[node_idx + i];
std::cerr << node_idx + i << " " << ggml_op_name(n->op) << " " << n->name;
if (n->op == GGML_OP_GLU) {
std::cerr << " " << ggml_glu_op_name(ggml_get_glu_op(n)) << " " << (n->src[1] ? "split" : "single") << " ";
}
std::cerr << std::endl;
}
}
#endif
switch (node->op) {
case GGML_OP_REPEAT:
@@ -11533,7 +11631,11 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break;
case GGML_OP_ARGSORT:
if (ctx->num_additional_fused_ops) {
ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx, dryrun);
} else {
ggml_vk_argsort(ctx, compute_ctx, src0, node, dryrun);
}
break;
case GGML_OP_SUM:
@@ -12306,30 +12408,27 @@ static bool ggml_vk_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, st
}
static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph,
int node_idx, bool with_norm) {
int node_idx, topk_moe_mode mode) {
if (with_norm) {
if (node_idx + (int)topk_moe_norm.size() > cgraph->n_nodes) {
return false;
}
for (size_t i = 0; i < topk_moe_norm.size(); ++i) {
if (cgraph->nodes[node_idx + i]->op != topk_moe_norm[i]) {
return false;
}
}
} else {
if (node_idx + (int)topk_moe.size() > cgraph->n_nodes) {
return false;
}
for (size_t i = 0; i < topk_moe.size(); ++i) {
if (cgraph->nodes[node_idx + i]->op != topk_moe[i]) {
return false;
}
}
}
const ggml_tensor * softmax;
const ggml_tensor * weights;
const ggml_tensor * softmax = cgraph->nodes[node_idx + 0];
const ggml_tensor * weights = with_norm ? cgraph->nodes[node_idx + 8] : cgraph->nodes[node_idx + 4];
switch (mode) {
case TOPK_MOE_EARLY_SOFTMAX_NORM:
softmax = cgraph->nodes[node_idx + 0];
weights = cgraph->nodes[node_idx + 9];
break;
case TOPK_MOE_EARLY_SOFTMAX:
softmax = cgraph->nodes[node_idx + 0];
weights = cgraph->nodes[node_idx + 4];
break;
case TOPK_MOE_LATE_SOFTMAX:
softmax = cgraph->nodes[node_idx + 4];
weights = cgraph->nodes[node_idx + 5];
break;
default:
return false;
}
const float * op_params = (const float *)softmax->op_params;
@@ -12355,60 +12454,6 @@ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struc
return false;
}
// Check that the nodes don't have any unexpected uses
const ggml_tensor * reshape1 = cgraph->nodes[node_idx + 1];
const ggml_tensor * argsort = cgraph->nodes[node_idx + 2];
const ggml_tensor * view = cgraph->nodes[node_idx + 3];
const ggml_tensor * get_rows = cgraph->nodes[node_idx + 4];
const ggml_tensor * reshape5 = with_norm ? cgraph->nodes[node_idx + 5] : nullptr;
const ggml_tensor * sum_rows = with_norm ? cgraph->nodes[node_idx + 6] : nullptr;
const ggml_tensor * div = with_norm ? cgraph->nodes[node_idx + 7] : nullptr;
const ggml_tensor * reshape8 = with_norm ? cgraph->nodes[node_idx + 8] : nullptr;
// softmax is used by reshape and argsort
if (ggml_node_get_use_count(cgraph, node_idx) != 2 ||
reshape1->src[0] != softmax ||
argsort->src[0] != softmax) {
return false;
}
// reshape is used by get_rows
if (ggml_node_get_use_count(cgraph, node_idx + 1) != 1 ||
get_rows->src[0] != reshape1) {
return false;
}
// argsort is used by view
if (ggml_node_get_use_count(cgraph, node_idx + 2) != 1 ||
view->src[0] != argsort) {
return false;
}
// view is written (via argsort), we can skip checking it
if (with_norm) {
// get_rows is used by reshape
if (ggml_node_get_use_count(cgraph, node_idx + 4) != 1 ||
reshape5->src[0] != get_rows) {
return false;
}
// reshape is used by sum_rows and div
if (ggml_node_get_use_count(cgraph, node_idx + 5) != 2 ||
sum_rows->src[0] != reshape5 ||
div->src[0] != reshape5) {
return false;
}
// sum_rows is used by div
if (ggml_node_get_use_count(cgraph, node_idx + 6) != 1 ||
div->src[1] != sum_rows) {
return false;
}
// div/reshape are written
if (reshape8->src[0] != div) {
return false;
}
}
if (!ctx->device->subgroup_arithmetic ||
!ctx->device->subgroup_shuffle ||
!ctx->device->subgroup_require_full_support ||
@@ -12494,10 +12539,18 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) {
ctx->num_additional_fused_ops = topk_moe_norm.size() - 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) {
ctx->num_additional_fused_ops = topk_moe.size() - 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax_norm, { i + 3, i + 9 }) &&
ggml_check_edges(cgraph, i, topk_moe_early_softmax_norm_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX_NORM)) {
ctx->num_additional_fused_ops = topk_moe_early_softmax_norm.size() - 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax, { i + 3, i + 4 }) &&
ggml_check_edges(cgraph, i, topk_moe_early_softmax_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX)) {
ctx->num_additional_fused_ops = topk_moe_early_softmax.size() - 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_late_softmax, { i + 1, i + 5 }) &&
ggml_check_edges(cgraph, i, topk_moe_late_softmax_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_LATE_SOFTMAX)) {
ctx->num_additional_fused_ops = topk_moe_late_softmax.size() - 1;
}
}
ggml_vk_build_graph(ctx, cgraph, i, nullptr, 0, true, false, false, false);
@@ -12595,10 +12648,18 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
ctx->num_additional_fused_ops = num_adds - 1;
} else if (ggml_vk_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ctx->num_additional_fused_ops = 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, true)) {
ctx->num_additional_fused_ops = topk_moe_norm.size() - 1;
} else if (ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, false)) {
ctx->num_additional_fused_ops = topk_moe.size() - 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax_norm, { i + 3, i + 9 }) &&
ggml_check_edges(cgraph, i, topk_moe_early_softmax_norm_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX_NORM)) {
ctx->num_additional_fused_ops = topk_moe_early_softmax_norm.size() - 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax, { i + 3, i + 4 }) &&
ggml_check_edges(cgraph, i, topk_moe_early_softmax_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX)) {
ctx->num_additional_fused_ops = topk_moe_early_softmax.size() - 1;
} else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_late_softmax, { i + 1, i + 5 }) &&
ggml_check_edges(cgraph, i, topk_moe_late_softmax_edges) &&
ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_LATE_SOFTMAX)) {
ctx->num_additional_fused_ops = topk_moe_late_softmax.size() - 1;
}
}
@@ -12730,25 +12791,44 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
while (first_unused < graph->n_nodes) {
std::vector<int> current_set;
// Avoid reordering topk_moe_norm
if (first_unused + (int)topk_moe_norm.size() <= graph->n_nodes) {
bool is_topk_moe_norm = true;
for (size_t j = 0; j < topk_moe_norm.size(); ++j) {
if (graph->nodes[first_unused + j]->op != topk_moe_norm[j] || used[first_unused + j]) {
is_topk_moe_norm = false;
// Check for fusion patterns and avoid reordering them
auto const &match_pattern = [&](const std::initializer_list<ggml_op> &pattern, int start) -> bool {
if (start + (int)pattern.size() <= graph->n_nodes) {
bool is_pattern = true;
for (size_t j = 0; j < pattern.size(); ++j) {
if (graph->nodes[start + j]->op != pattern.begin()[j] || used[start + j]) {
is_pattern = false;
}
}
if (is_topk_moe_norm) {
for (size_t j = 0; j < topk_moe_norm.size(); ++j) {
return is_pattern;
}
return false;
};
auto const &keep_pattern = [&](const std::initializer_list<ggml_op> &pattern) -> bool {
if (match_pattern(pattern, first_unused)) {
for (size_t j = 0; j < pattern.size(); ++j) {
new_order.push_back(graph->nodes[first_unused + j]);
used[first_unused + j] = true;
}
while (first_unused < graph->n_nodes && used[first_unused]) {
first_unused++;
}
return true;
}
return false;
};
if (keep_pattern(topk_moe_early_softmax_norm)) {
continue;
}
if (keep_pattern(topk_moe_early_softmax)) {
continue;
}
if (keep_pattern(topk_moe_late_softmax)) {
continue;
}
// First, grab the next unused node.
current_set.push_back(first_unused);
@@ -12766,6 +12846,12 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
if (is_empty(graph->nodes[j])) {
continue;
}
// Don't pull forward nodes from fusion patterns
if (match_pattern(topk_moe_early_softmax_norm, j) ||
match_pattern(topk_moe_early_softmax, j) ||
match_pattern(topk_moe_late_softmax, j)) {
continue;
}
bool ok = true;
for (int c = first_unused; c < j; ++c) {
if (!used[c] &&

View File

@@ -11,6 +11,8 @@ layout (push_constant) uniform parameter
{
uint n_rows;
uint n_expert_used;
float clamp_min;
float clamp_max;
};
layout(local_size_x_id = 0, local_size_y = 4, local_size_z = 1) in;
@@ -18,6 +20,7 @@ layout(local_size_x_id = 0, local_size_y = 4, local_size_z = 1) in;
layout(constant_id = 0) const uint WARP_SIZE = 32;
layout(constant_id = 1) const uint n_experts = 512;
layout(constant_id = 2) const bool with_norm = true;
layout(constant_id = 3) const bool late_softmax = false;
const uint experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
@@ -25,6 +28,52 @@ layout (binding = 0, std430) readonly buffer Logits {float logits[];};
layout (binding = 1, std430) writeonly buffer Weights {float weights[];};
layout (binding = 2, std430) writeonly buffer Ids {uint ids[];};
const float INFINITY = 1.0 / 0.0;
// Warp-local softmax used for both the pre-top-k logits and the post-top-k delayed path.
void softmax_warp_inplace(inout float vals[experts_per_thread], const uint limit, const uint lane, const bool use_limit) {
float max_val = -INFINITY;
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
const uint idx = lane + i * WARP_SIZE;
const bool is_active = !use_limit || (idx < limit);
if (is_active) {
max_val = max(max_val, vals[i]);
}
}
max_val = subgroupMax(max_val);
float sum = 0.f;
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
const uint idx = lane + i * WARP_SIZE;
const bool is_active = !use_limit || (idx < limit);
if (is_active) {
const float val = exp(vals[i] - max_val);
vals[i] = val;
sum += val;
} else {
vals[i] = 0.f;
}
}
sum = subgroupAdd(sum);
const float inv_sum = 1.0f / sum;
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
const uint idx = lane + i * WARP_SIZE;
const bool is_active = !use_limit || (idx < limit);
if (is_active) {
vals[i] *= inv_sum;
}
}
}
void main() {
const uint row = gl_WorkGroupID.x * gl_WorkGroupSize.y + gl_LocalInvocationID.y;
if (row >= n_rows) {
@@ -35,43 +84,16 @@ void main() {
const uint weights_offset = n_expert_used * row;
const uint ids_offset = n_experts * row;
float logits_r[experts_per_thread];
const float INFINITY = 1.0 / 0.0;
float wt[experts_per_thread];
[[unroll]]
for (uint i = 0; i < n_experts; i += WARP_SIZE) {
const uint expert = i + gl_LocalInvocationID.x;
logits_r[i / WARP_SIZE] = n_experts % WARP_SIZE == 0 || expert < n_experts ? logits[logits_offset + expert] : -INFINITY;
wt[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[logits_offset + expert] : -INFINITY;
}
float max_val = logits_r[0];
[[unroll]]
for (int i = 1; i < experts_per_thread; i++) {
const float val = logits_r[i];
max_val = max(val, max_val);
}
max_val = subgroupMax(max_val);
float wt[experts_per_thread];
float tmp = 0.f;
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
const float val = logits_r[i];
wt[i] = exp(val - max_val);
tmp += wt[i];
}
tmp = subgroupAdd(tmp);
const float inv_sum = 1.0f / tmp;
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
wt[i] = wt[i] * inv_sum;
if (!late_softmax) {
softmax_warp_inplace(wt, n_experts, gl_LocalInvocationID.x, false);
}
// at this point, each thread holds a portion of softmax,
@@ -82,6 +104,11 @@ void main() {
float output_weights[experts_per_thread];
[[unroll]]
for (int i = 0; i < experts_per_thread; i++) {
output_weights[i] = 0.f;
}
for (int k = 0; k < n_expert_used; k++) {
float max_val = wt[0];
uint max_expert = gl_LocalInvocationID.x;
@@ -121,6 +148,7 @@ void main() {
if (with_norm) {
wt_sum = subgroupAdd(wt_sum);
wt_sum = clamp(wt_sum, clamp_min, clamp_max);
const float inv_sum = 1.0f / wt_sum;
[[unroll]]
@@ -129,6 +157,10 @@ void main() {
}
}
if (late_softmax) {
softmax_warp_inplace(output_weights, n_expert_used, gl_LocalInvocationID.x, true);
}
[[unroll]]
for (uint i = 0; i < experts_per_thread; ++i) {
uint idx = i * WARP_SIZE + gl_LocalInvocationID.x;