CANN: Add ROPE sin/cos cache for reuse (#15912)

* CANN: Add ROPE sin/cos cache for reuse

Introduce sin/cos caching mechanism in ROPE to avoid redundant
computation across layers. The cache is built on the first layer
per device and reused by subsequent layers if parameters match.

- Added sin_cache / cos_cache pointers and position_length tracking
- Introduced cache validity flags and properties:
  (ext_factor, theta_scale, freq_scale, attn_factor, is_neox)
- Accelerates ROPE by eliminating repeated sin/cos generation

This change reduces overhead in multi-layer scenarios while
preserving correctness by verifying parameter consistency.

Co-authored-by: hipudding <huafengchun@gmail.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
This commit is contained in:
Chenguang Li
2025-09-10 18:42:00 +08:00
committed by GitHub
parent 28b5f190ef
commit 10d8b2b6b0
3 changed files with 56 additions and 24 deletions

View File

@@ -2268,8 +2268,6 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
* stream, and persistent buffers for rope init/cache. * stream, and persistent buffers for rope init/cache.
* @param dst The destination ggml_tensor whose computation * @param dst The destination ggml_tensor whose computation
* depends on the RoPE values (usually Qcur/Kcur). * depends on the RoPE values (usually Qcur/Kcur).
* @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values.
* @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values.
* @param theta_scale Scalar exponent base for computing theta scale values. * @param theta_scale Scalar exponent base for computing theta scale values.
* @param freq_scale Frequency scaling factor, applied to theta scale. * @param freq_scale Frequency scaling factor, applied to theta scale.
* @param attn_factor Attention scaling factor, applied to sin/cos. * @param attn_factor Attention scaling factor, applied to sin/cos.
@@ -2277,17 +2275,23 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
* (dim expansion vs repeat_interleave). * (dim expansion vs repeat_interleave).
*/ */
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
void* sin_tensor_buffer, void* cos_tensor_buffer,
float* corr_dims, float ext_factor, float* corr_dims, float ext_factor,
float theta_scale, float freq_scale, float theta_scale, float freq_scale,
float attn_factor, bool is_neox) { float attn_factor, bool is_neox) {
// int sin/cos cache, cache has different repeat method depond on
// @param.is_neox
ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src1 = dst->src[1]; // position ggml_tensor* src1 = dst->src[1]; // position
ggml_tensor* src2 = dst->src[2]; // freq_factors ggml_tensor* src2 = dst->src[2]; // freq_factors
if(src2 == nullptr && ctx.rope_cache.cached
&& ctx.rope_cache.ext_factor == ext_factor
&& ctx.rope_cache.theta_scale == theta_scale
&& ctx.rope_cache.freq_scale == freq_scale
&& ctx.rope_cache.attn_factor == attn_factor
&& ctx.rope_cache.is_neox == is_neox) {
// use cache.
return;
}
int64_t theta_scale_length = src0->ne[0] / 2; int64_t theta_scale_length = src0->ne[0] / 2;
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1}; int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float), size_t theta_scale_nb[] = {sizeof(float), sizeof(float), sizeof(float),
@@ -2316,8 +2320,6 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
ctx.rope_cache.freq_scale != freq_scale) { ctx.rope_cache.freq_scale != freq_scale) {
ctx.rope_cache.theta_scale_length = theta_scale_length; ctx.rope_cache.theta_scale_length = theta_scale_length;
ctx.rope_cache.theta_scale = theta_scale;
ctx.rope_cache.freq_scale = freq_scale;
if (ctx.rope_cache.theta_scale_cache != nullptr) { if (ctx.rope_cache.theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache)); ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache));
@@ -2342,7 +2344,7 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
// return MIN(1, MAX(0, y)) - 1; // return MIN(1, MAX(0, y)) - 1;
yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float)); yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float));
void* yarn_ramp_buffer = yarn_ramp_allocator.get(); void* yarn_ramp_buffer = yarn_ramp_allocator.get();
acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float_t), acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS); theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float zero_value = 0, one_value = 1; float zero_value = 0, one_value = 1;
float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]); float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]);
@@ -2411,6 +2413,20 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor); ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
} }
// init sin_repeat && cos_repeat, only to accelerate first layer on each device
if (position_length > ctx.rope_cache.position_length) {
ctx.rope_cache.position_length = position_length;
if (ctx.rope_cache.sin_cache != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_cache.sin_cache));
}
if (ctx.rope_cache.cos_cache != nullptr) {
ACL_CHECK(aclrtFree(ctx.rope_cache.cos_cache));
}
int64_t repeat_theta_length = theta_scale_length * position_length * 2;
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.sin_cache, repeat_theta_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.cos_cache, repeat_theta_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST));
}
// position // position
aclTensor* acl_position_tensor = ggml_cann_create_tensor( aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type), src1->data, ggml_cann_type_mapping(src1->type),
@@ -2462,10 +2478,10 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
} }
aclTensor* acl_sin_repeat_tensor = aclTensor* acl_sin_repeat_tensor =
ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), ggml_cann_create_tensor(ctx.rope_cache.sin_cache, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_repeat_tensor = aclTensor* acl_cos_repeat_tensor =
ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), ggml_cann_create_tensor(ctx.rope_cache.cos_cache, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
// repeat // repeat
@@ -2483,6 +2499,14 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
num_repeats, output_size); num_repeats, output_size);
} }
// Other layers use cache except first layer.
ctx.rope_cache.cached = true;
ctx.rope_cache.ext_factor = ext_factor;
ctx.rope_cache.theta_scale = theta_scale;
ctx.rope_cache.freq_scale = freq_scale;
ctx.rope_cache.attn_factor = attn_factor;
ctx.rope_cache.is_neox = is_neox;
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor, ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
acl_theta_tensor, acl_sin_tensor, acl_sin_repeat_tensor, acl_cos_tensor, acl_theta_tensor, acl_sin_tensor, acl_sin_repeat_tensor, acl_cos_tensor,
acl_cos_repeat_tensor); acl_cos_repeat_tensor);
@@ -2504,10 +2528,7 @@ aclnnStatus aclnnRotaryPositionEmbedding(void* workspace,
#endif #endif
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: use ascendc
// Only test with LLAMA model.
ggml_tensor* src0 = dst->src[0]; // input ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src1 = dst->src[1];
// param // param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
@@ -2538,15 +2559,8 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
// sin/cos tensor length.
int64_t repeat_theta_length = src0->ne[0] * src1->ne[0];
ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
void *sin_tensor_buffer = sin_tensor_allocator.get();
void *cos_tensor_buffer = cos_tensor_allocator.get();
// init ctx.rope_cos/rope_sin cache // init ctx.rope_cos/rope_sin cache
aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer, corr_dims, ext_factor, aclnn_cache_init(ctx, dst, corr_dims, ext_factor,
theta_scale, freq_scale, attn_factor, is_neox); theta_scale, freq_scale, attn_factor, is_neox);
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1}; int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
@@ -2556,10 +2570,10 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
} }
aclTensor* acl_sin_reshape_tensor = aclTensor* acl_sin_reshape_tensor =
ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float), ggml_cann_create_tensor(ctx.rope_cache.sin_cache, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_reshape_tensor = aclTensor* acl_cos_reshape_tensor =
ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float), ggml_cann_create_tensor(ctx.rope_cache.cos_cache, ACL_FLOAT, sizeof(float),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_src = ggml_cann_create_tensor(src0); aclTensor* acl_src = ggml_cann_create_tensor(src0);

View File

@@ -425,12 +425,27 @@ struct ggml_cann_rope_cache {
if(theta_scale_cache != nullptr) { if(theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(theta_scale_cache)); ACL_CHECK(aclrtFree(theta_scale_cache));
} }
if(sin_cache != nullptr) {
ACL_CHECK(aclrtFree(sin_cache));
}
if(cos_cache != nullptr) {
ACL_CHECK(aclrtFree(cos_cache));
}
} }
void* theta_scale_cache = nullptr; void* theta_scale_cache = nullptr;
int64_t theta_scale_length = 0; int64_t theta_scale_length = 0;
// sin/cos cache, used only to accelerate first layer on each device
void* sin_cache = nullptr;
void* cos_cache = nullptr;
int64_t position_length = 0;
// Properties to check before reusing the sincos cache
bool cached = false;
float ext_factor = 0.0f;
float theta_scale = 0.0f; float theta_scale = 0.0f;
float freq_scale = 0.0f; float freq_scale = 0.0f;
float attn_factor = 0.0f;
bool is_neox = false;
}; };
struct ggml_cann_tensor_cache { struct ggml_cann_tensor_cache {

View File

@@ -2353,6 +2353,9 @@ static enum ggml_status ggml_backend_cann_graph_compute(
ggml_cann_set_device(cann_ctx->device); ggml_cann_set_device(cann_ctx->device);
g_nz_workspaces[cann_ctx->device].clear(); g_nz_workspaces[cann_ctx->device].clear();
// calculate rope cache for fist layer in current device.
cann_ctx->rope_cache.cached = false;
#ifdef USE_ACL_GRAPH #ifdef USE_ACL_GRAPH
bool use_cann_graph = true; bool use_cann_graph = true;
bool cann_graph_update_required = false; bool cann_graph_update_required = false;