mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	metal : Q6_K implementation (#1752)
* Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master * Metal implementation for Q6_K Similar to the CUDA implementation. No idea if this is the optimum for Metal, but the few alternative variants I tried all had a lower performance. We get 36.5 ms / token on M2 Max with 30 GPU cores. This corresponds to ~200 GB/second throughput. * clang-tidy : add config back * Much better Q6_K implementation for metal 28.3 ms / token for 7B. Subtracting ~9 ms that is spent in other compute graph operations, we are left with ~19 ms for the matrix multiplications. The model is ~5.5 GB, so we are getting 1000 / 19 * 5.5 = 290 GB/s! --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
		
							
								
								
									
										17
									
								
								ggml-metal.m
									
									
									
									
									
								
							
							
						
						
									
										17
									
								
								ggml-metal.m
									
									
									
									
									
								
							| @@ -50,10 +50,12 @@ struct ggml_metal_context { | ||||
|     GGML_METAL_DECL_KERNEL(get_rows_f16); | ||||
|     GGML_METAL_DECL_KERNEL(get_rows_q4_0); | ||||
|     GGML_METAL_DECL_KERNEL(get_rows_q4_k); | ||||
|     GGML_METAL_DECL_KERNEL(get_rows_q6_k); | ||||
|     GGML_METAL_DECL_KERNEL(rms_norm); | ||||
|     GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); | ||||
|     GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); | ||||
|     GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32); | ||||
|     GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32); | ||||
|     GGML_METAL_DECL_KERNEL(rope); | ||||
|     GGML_METAL_DECL_KERNEL(cpy_f32_f16); | ||||
|     GGML_METAL_DECL_KERNEL(cpy_f32_f32); | ||||
| @@ -136,10 +138,12 @@ struct ggml_metal_context * ggml_metal_init(void) { | ||||
|         GGML_METAL_ADD_KERNEL(get_rows_f16); | ||||
|         GGML_METAL_ADD_KERNEL(get_rows_q4_0); | ||||
|         GGML_METAL_ADD_KERNEL(get_rows_q4_k); | ||||
|         GGML_METAL_ADD_KERNEL(get_rows_q6_k); | ||||
|         GGML_METAL_ADD_KERNEL(rms_norm); | ||||
|         GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); | ||||
|         GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); | ||||
|         GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32); | ||||
|         GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32); | ||||
|         GGML_METAL_ADD_KERNEL(rope); | ||||
|         GGML_METAL_ADD_KERNEL(cpy_f32_f16); | ||||
|         GGML_METAL_ADD_KERNEL(cpy_f32_f32); | ||||
| @@ -530,6 +534,15 @@ void ggml_metal_graph_compute( | ||||
|                                     nth1 = 16; | ||||
|                                     [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32]; | ||||
|                                 } break; | ||||
|                             case GGML_TYPE_Q6_K: | ||||
|                                 { | ||||
|                                     GGML_ASSERT(ne02 == 1); | ||||
|                                     GGML_ASSERT(ne12 == 1); | ||||
|  | ||||
|                                     nth0 = 4; | ||||
|                                     nth1 = 16; | ||||
|                                     [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32]; | ||||
|                                 } break; | ||||
|                             default: | ||||
|                                 { | ||||
|                                     fprintf(stderr, "Asserting on type %d\n",(int)src0t); | ||||
| @@ -560,6 +573,9 @@ void ggml_metal_graph_compute( | ||||
|                         } else if (src0t == GGML_TYPE_Q4_K) { | ||||
|                             [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; | ||||
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | ||||
|                         } else if (src0t == GGML_TYPE_Q6_K) { | ||||
|                             [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0]; | ||||
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | ||||
|                         } else { | ||||
|                             [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; | ||||
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; | ||||
| @@ -576,6 +592,7 @@ void ggml_metal_graph_compute( | ||||
|                         case GGML_TYPE_F16:  [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; | ||||
|                         case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; | ||||
|                         case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break; | ||||
|                         case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break; | ||||
|                         default: GGML_ASSERT(false && "not implemented"); | ||||
|                     } | ||||
|  | ||||
|   | ||||
							
								
								
									
										177
									
								
								ggml-metal.metal
									
									
									
									
									
								
							
							
						
						
									
										177
									
								
								ggml-metal.metal
									
									
									
									
									
								
							| @@ -303,18 +303,37 @@ kernel void kernel_mul_mat_q4_0_f32( | ||||
|         sum[ith] += acc*d; | ||||
|     } | ||||
|  | ||||
|     // accumulate the sum from all threads in the threadgroup | ||||
|     // | ||||
|     // Accumulate the sum from all threads in the threadgroup | ||||
|     // This version is slightly faster than the commented out one below, | ||||
|     // which I copy-pasted from ggerganov's q4_0 dot product for metal. | ||||
|     // | ||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     for (uint i = nth/2; i > 0; i /= 2) { | ||||
|         if (ith < i) { | ||||
|             sum[ith] += sum[ith + i]; | ||||
|         } | ||||
|         threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     if (ith%4 == 0) { | ||||
|         for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; | ||||
|     } | ||||
|  | ||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     if (ith%16 == 0) { | ||||
|         for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; | ||||
|     } | ||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     if (ith == 0) { | ||||
|         for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; | ||||
|         dst[r1*ne0 + r0] = sum[0]; | ||||
|     } | ||||
|  | ||||
|     //// accumulate the sum from all threads in the threadgroup | ||||
|     //threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     //for (uint i = nth/2; i > 0; i /= 2) { | ||||
|     //    if (ith < i) { | ||||
|     //        sum[ith] += sum[ith + i]; | ||||
|     //    } | ||||
|     //    threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     //} | ||||
|  | ||||
|     //if (ith == 0) { | ||||
|     //    dst[r1*ne0 + r0] = sum[0]; | ||||
|     //} | ||||
| } | ||||
|  | ||||
| kernel void kernel_mul_mat_f16_f32( | ||||
| @@ -515,6 +534,13 @@ typedef struct { | ||||
|     uint8_t qs[QK_K/2];        // 4--bit quants | ||||
| } block_q4_k; | ||||
|  | ||||
| typedef struct { | ||||
|     uint8_t ql[QK_K/2];      // quants, lower 4 bits | ||||
|     uint8_t qh[QK_K/4];      // quants, upper 2 bits | ||||
|     int8_t  scales[QK_K/16]; // scales, quantized with 8 bits | ||||
|     half d;                  // super-block scale | ||||
| } block_q6_k; | ||||
|  | ||||
| static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) { | ||||
|     uchar4 r; | ||||
|     if (j < 4) { | ||||
| @@ -554,6 +580,38 @@ static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, i | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) { | ||||
|     assert(k % QK_K == 0); | ||||
|     const int nb = k / QK_K; | ||||
|  | ||||
|     for (int i = 0; i < nb; i++) { | ||||
|  | ||||
|         const float d = x[i].d; | ||||
|  | ||||
|         device const uint8_t * ql = x[i].ql; | ||||
|         device const uint8_t * qh = x[i].qh; | ||||
|         device const int8_t  * sc = x[i].scales; | ||||
|  | ||||
|         for (int n = 0; n < QK_K; n += 128) { | ||||
|             for (int l = 0; l < 32; ++l) { | ||||
|                 int is = l/16; | ||||
|                 const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; | ||||
|                 const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; | ||||
|                 const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; | ||||
|                 const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; | ||||
|                 y[l +  0] = d * sc[is + 0] * q1; | ||||
|                 y[l + 32] = d * sc[is + 2] * q2; | ||||
|                 y[l + 64] = d * sc[is + 4] * q3; | ||||
|                 y[l + 96] = d * sc[is + 6] * q4; | ||||
|             } | ||||
|             y  += 128; | ||||
|             ql += 64; | ||||
|             qh += 32; | ||||
|             sc += 8; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| kernel void kernel_get_rows_q4_k( | ||||
|         device const  void * src0, | ||||
|         device const   int * src1, | ||||
| @@ -665,3 +723,108 @@ kernel void kernel_mul_mat_q4_k_f32( | ||||
|     //    dst[r1*ne0 + r0] = sum[0]; | ||||
|     //} | ||||
| } | ||||
|  | ||||
| kernel void kernel_get_rows_q6_k( | ||||
|         device const  void * src0, | ||||
|         device const   int * src1, | ||||
|         device       float * dst, | ||||
|         constant   int64_t & ne00, | ||||
|         constant  uint64_t & nb01, | ||||
|         constant  uint64_t & nb1, | ||||
|         uint tpig[[thread_position_in_grid]]) { | ||||
|     const int i = tpig; | ||||
|     const int r = ((device int32_t *) src1)[i]; | ||||
|  | ||||
|     dequantize_row_q6_k( | ||||
|             (device const block_q6_k *) ((device char *) src0 + r*nb01), | ||||
|                        (device float *) ((device char *)  dst + i*nb1), ne00); | ||||
| } | ||||
|  | ||||
| kernel void kernel_mul_mat_q6_k_f32( | ||||
|         device const  void * src0, | ||||
|         device const float * src1, | ||||
|         device       float * dst, | ||||
|         constant   int64_t & ne00, | ||||
|         constant   int64_t & ne01, | ||||
|         constant  uint64_t & nb00, | ||||
|         constant  uint64_t & nb01, | ||||
|         constant  uint64_t & nb02, | ||||
|         constant   int64_t & ne10, | ||||
|         constant   int64_t & ne11, | ||||
|         constant  uint64_t & nb10, | ||||
|         constant  uint64_t & nb11, | ||||
|         constant  uint64_t & nb12, | ||||
|         constant   int64_t & ne0, | ||||
|         constant   int64_t & ne1, | ||||
|         threadgroup float  * sum [[threadgroup(0)]], | ||||
|         uint2 tgpig[[threadgroup_position_in_grid]], | ||||
|         uint2  tpig[[thread_position_in_grid]],               // we don't use this for now | ||||
|         uint2 tpitg[[thread_position_in_threadgroup]], | ||||
|         uint2  tptg[[threads_per_threadgroup]]) { | ||||
|  | ||||
|     const uint8_t kmask1 = 0x03; | ||||
|     const uint8_t kmask2 = 0x0C; | ||||
|     const uint8_t kmask3 = 0x30; | ||||
|     const uint8_t kmask4 = 0xC0; | ||||
|  | ||||
|     const int nb = ne00/QK_K; | ||||
|  | ||||
|     const int64_t r0 = tgpig.x; | ||||
|     const int64_t r1 = tgpig.y; | ||||
|  | ||||
|     device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb; | ||||
|     device const float     * yy = (device const float      *) src1 + r1*ne10; | ||||
|  | ||||
|     const uint nth = tptg.x*tptg.y; | ||||
|     const uint ith = tptg.y*tpitg.x + tpitg.y; | ||||
|  | ||||
|     const int step = QK_K / tptg.y;     // we expect this to be 16 | ||||
|     const int iqs  = step * tpitg.y;    // 0...240 in steps of 16 | ||||
|     const int ip   = iqs / 128;         // 0 or 1 | ||||
|     const int il   = (iqs - 128*ip)/16; // 0...7 | ||||
|     const int n    = 4; | ||||
|     const int is   = 8*ip + (n*il)/16; | ||||
|  | ||||
|     float sumf = 0; | ||||
|     for (int i = tpitg.x; i < nb; i += tptg.x) { | ||||
|  | ||||
|         device const uint8_t * ql = x[i].ql + 64*ip + n*il; | ||||
|         device const uint8_t * qh = x[i].qh + 32*ip + n*il; | ||||
|         device const int8_t  * sc = x[i].scales + is; | ||||
|  | ||||
|         device const float * y = yy + i * QK_K + 128*ip + n*il; | ||||
|  | ||||
|         const float dall = x[i].d; | ||||
|  | ||||
|         float4 sums = {0.f, 0.f, 0.f, 0.f}; | ||||
|         for (int l = 0; l < n; ++l) { | ||||
|             sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); | ||||
|             sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); | ||||
|             sums[2] += y[l+64] * ((int8_t)((ql[l+ 0]  >> 4) | ((qh[l] & kmask3) << 0)) - 32); | ||||
|             sums[3] += y[l+96] * ((int8_t)((ql[l+32]  >> 4) | ((qh[l] & kmask4) >> 2)) - 32); | ||||
|         } | ||||
|  | ||||
|         sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]); | ||||
|  | ||||
|     } | ||||
|  | ||||
|     sum[ith] = sumf; | ||||
|  | ||||
|     // | ||||
|     // Accumulate the sum from all threads in the threadgroup | ||||
|     // | ||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     if (ith%4 == 0) { | ||||
|         for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i]; | ||||
|     } | ||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     if (ith%16 == 0) { | ||||
|         for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i]; | ||||
|     } | ||||
|     threadgroup_barrier(mem_flags::mem_threadgroup); | ||||
|     if (ith == 0) { | ||||
|         for (int i = 16; i < nth; i += 16) sum[0] += sum[i]; | ||||
|         dst[r1*ne0 + r0] = sum[0]; | ||||
|     } | ||||
|  | ||||
| } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Kawrakow
					Kawrakow