CUDA: larger SRAM reads for tile FA, AMD FP16 dot (#15927)

* CUDA: larger SRAM reads for tile FA, AMD FP16 dot

* fix logic for availability of v_dot2_f32_f16
This commit is contained in:
Johannes Gäßler
2025-09-11 21:19:58 +02:00
committed by GitHub
parent df082f5630
commit 0e6ff0046f
3 changed files with 127 additions and 36 deletions

View File

@@ -555,7 +555,7 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v
}
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
#if defined(GGML_USE_HIP) && defined(GCN)
#if defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
#else
#ifdef FAST_FP16_AVAILABLE
@@ -567,7 +567,21 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v,
acc += tmpv.x * tmpu.x;
acc += tmpv.y * tmpu.y;
#endif // FAST_FP16_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(GCN)
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(GCN5) || defined(CDNA))
}
// Aligned memory transfers of 8/16 bytes can be faster than 2 transfers with 4 bytes, especially on AMD.
template <int nbytes>
static __device__ __forceinline__ void ggml_cuda_memcpy_1(void * __restrict__ dst, const void * __restrict__ src) {
if constexpr (nbytes == 4) {
*(int *) dst = *(const int *) src;
} else if constexpr (nbytes == 8) {
*(int2 *) dst = *(const int2 *) src;
} else if constexpr (nbytes == 16) {
*(int4 *) dst = *(const int4 *) src;
} else {
static_assert(nbytes == 0 && nbytes == -1, "bad nbytes");
}
}
static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {

View File

@@ -8,11 +8,14 @@ static int fattn_tile_get_kq_stride_host(const int D, const int ncols, const int
if (GGML_CUDA_CC_IS_AMD(cc)) {
switch (D) {
case 64:
return ncols <= 16 ? 32 : 64;
case 128:
return ncols <= 16 ? 64 : warp_size;
case 256:
return 64;
case 128:
case 256:
if (GGML_CUDA_CC_IS_GCN(cc) || GGML_CUDA_CC_IS_CDNA(cc)) {
return ncols <= 16 ? 64 : 32;
} else {
return 64;
}
default:
GGML_ABORT("fatal error");
return -1;
@@ -41,17 +44,26 @@ static int fattn_tile_get_kq_stride_host(const int D, const int ncols, const int
GGML_ABORT("fatal error");
return -1;
}
GGML_UNUSED(warp_size);
}
static constexpr __device__ int fattn_tile_get_kq_stride_device(int D, int ncols, int warp_size) {
#ifdef GGML_USE_HIP
switch (D) {
case 64:
return ncols <= 16 ? 32 : 64;
case 128:
return ncols <= 16 ? 64 : warp_size;
case 256:
return 64;
case 128:
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 32;
#else
return 64;
#endif // defined(GCN) || defined(CDNA)
case 256:
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 32;
#else
return 64;
#endif // defined(GCN) || defined(CDNA)
default:
return -1;
}
@@ -88,9 +100,17 @@ static constexpr __device__ int fattn_tile_get_kq_nbatch_device(int D, int ncols
case 64:
return 64;
case 128:
return ncols <= 16 ? 2*warp_size : 128;
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 128;
#else
return 64;
#endif // defined(GCN) || defined(CDNA)
case 256:
return ncols <= 16 ? 128 : 2*warp_size;
#if defined(GCN) || defined(CDNA)
return ncols <= 16 ? 64 : 128;
#else
return ncols <= 16 ? 64 : 256;
#endif // defined(GCN) || defined(CDNA)
default:
return -1;
}
@@ -196,14 +216,21 @@ static __global__ void flash_attn_tile(
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
#if defined(GGML_USE_HIP)
constexpr int cpy_nb = 16;
#else
constexpr int cpy_nb = 8;
#endif // defined(GGML_USE_HIP) && defined(GCN)
constexpr int cpy_ne = cpy_nb / 4;
__shared__ float KQ[ncols][kq_stride];
#ifdef FAST_FP16_AVAILABLE
__shared__ half2 Q_tmp[ncols][D/2];
__shared__ half2 KV_tmp_h2[kq_stride * (kq_nbatch/2 + 1)]; // Padded to avoid memory bank conflicts.
__shared__ half2 KV_tmp_h2[kq_stride * (kq_nbatch/2 + cpy_ne)]; // Padded to avoid memory bank conflicts.
half2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#else
__shared__ float Q_tmp[ncols][D];
__shared__ float KV_tmp_f[kq_stride * (kq_nbatch + 1)]; // Padded to avoid memory bank conflicts.
__shared__ float KV_tmp_f[kq_stride * (kq_nbatch + cpy_ne)]; // Padded to avoid memory bank conflicts.
float2 * KV_tmp_f2 = (float2 *) KV_tmp_f;
float2 VKQ[ncols/nwarps][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#endif // FAST_FP16_AVAILABLE
@@ -256,11 +283,11 @@ static __global__ void flash_attn_tile(
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += warp_size) {
const half2 tmp_h2 = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1 + threadIdx.x];
#ifdef FAST_FP16_AVAILABLE
KV_tmp_h2[i_KQ*(kq_nbatch/2 + 1) + k_KQ_1 + threadIdx.x] = tmp_h2;
KV_tmp_h2[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1 + threadIdx.x] = tmp_h2;
#else
const float2 tmp_f2 = __half22float2(tmp_h2);
KV_tmp_f[i_KQ*(kq_nbatch + 1) + 2*k_KQ_1 + threadIdx.x] = tmp_f2.x;
KV_tmp_f[i_KQ*(kq_nbatch + 1) + 2*k_KQ_1 + warp_size + threadIdx.x] = tmp_f2.y;
KV_tmp_f[i_KQ*(kq_nbatch + cpy_ne) + 2*k_KQ_1 + threadIdx.x] = tmp_f2.x;
KV_tmp_f[i_KQ*(kq_nbatch + cpy_ne) + 2*k_KQ_1 + warp_size + threadIdx.x] = tmp_f2.y;
#endif // FAST_FP16_AVAILABLE
}
}
@@ -269,14 +296,14 @@ static __global__ void flash_attn_tile(
#ifdef FAST_FP16_AVAILABLE
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; ++k_KQ_1) {
half2 K_k[kq_stride/warp_size];
half2 Q_k[ncols/nwarps];
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += cpy_ne) {
half2 K_k[kq_stride/warp_size][cpy_ne];
half2 Q_k[ncols/nwarps][cpy_ne];
#else
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; ++k_KQ_1) {
float K_k[kq_stride/warp_size];
float Q_k[ncols/nwarps];
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; k_KQ_1 += cpy_ne) {
float K_k[kq_stride/warp_size][cpy_ne];
float Q_k[ncols/nwarps][cpy_ne];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
@@ -284,9 +311,9 @@ static __global__ void flash_attn_tile(
const int i_KQ = i_KQ_0 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
K_k[i_KQ_0/warp_size] = KV_tmp_h2[i_KQ*(kq_nbatch/2 + 1) + k_KQ_1];
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp_h2[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1]);
#else
K_k[i_KQ_0/warp_size] = KV_tmp_f [i_KQ*(kq_nbatch + 1) + k_KQ_1];
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp_f [i_KQ*(kq_nbatch + cpy_ne) + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
@@ -294,9 +321,9 @@ static __global__ void flash_attn_tile(
const int j_KQ = j_KQ_0 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
Q_k[j_KQ_0/nwarps] = Q_tmp[j_KQ][k_KQ_0/2 + k_KQ_1];
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0/nwarps], &Q_tmp[j_KQ][k_KQ_0/2 + k_KQ_1]);
#else
Q_k[j_KQ_0/nwarps] = Q_tmp[j_KQ][k_KQ_0 + k_KQ_1];
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0/nwarps], &Q_tmp[j_KQ][k_KQ_0 + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
@@ -304,7 +331,10 @@ static __global__ void flash_attn_tile(
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
ggml_cuda_mad(sum[i_KQ_0/warp_size][j_KQ_0/nwarps], K_k[i_KQ_0/warp_size], Q_k[j_KQ_0/nwarps]);
#pragma unroll
for (int k = 0; k < cpy_ne; ++k) {
ggml_cuda_mad(sum[i_KQ_0/warp_size][j_KQ_0/nwarps], K_k[i_KQ_0/warp_size][k], Q_k[j_KQ_0/nwarps][k]);
}
}
}
}
@@ -345,14 +375,54 @@ static __global__ void flash_attn_tile(
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
float kqsum_add = 0.0f;
if (kq_stride % (4*warp_size) == 0 && cpy_ne % 4 == 0) {
#pragma unroll
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
const int i = i0 + threadIdx.x;
for (int i0 = 0; i0 < kq_stride; i0 += 4*warp_size) {
const int i = i0 + 4*threadIdx.x;
const float diff = KQ[j][i] - kqmax[j0/nwarps];
const float val = expf(diff);
kqsum_add += val;
KQ[j][i] = val;
float4 val = *(const float4 *) &KQ[j][i];
val.x = expf(val.x - kqmax[j0/nwarps]);
val.y = expf(val.y - kqmax[j0/nwarps]);
val.z = expf(val.z - kqmax[j0/nwarps]);
val.w = expf(val.w - kqmax[j0/nwarps]);
kqsum_add += val.x + val.y + val.z + val.w;
#ifdef FAST_FP16_AVAILABLE
const half2 tmp[2] = {make_half2(val.x, val.y), make_half2(val.z, val.w)};
ggml_cuda_memcpy_1<sizeof(tmp)>(&KQ[j][i/2], &tmp);
#else
ggml_cuda_memcpy_1<sizeof(val)>(&KQ[j][i], &val);
#endif // FAST_FP16_AVAILABLE
}
} else if (kq_stride % (2*warp_size) == 0 && cpy_ne % 2 == 0) {
#pragma unroll
for (int i0 = 0; i0 < kq_stride; i0 += 2*warp_size) {
const int i = i0 + 2*threadIdx.x;
float2 val = *(const float2 *) &KQ[j][i];
val.x = expf(val.x - kqmax[j0/nwarps]);
val.y = expf(val.y - kqmax[j0/nwarps]);
kqsum_add += val.x + val.y;
#ifdef FAST_FP16_AVAILABLE
const half2 tmp = make_half2(val.x, val.y);
ggml_cuda_memcpy_1<sizeof(tmp)>(&KQ[j][i/2], &tmp);
#else
ggml_cuda_memcpy_1<sizeof(val)>(&KQ[j][i], &val);
#endif // FAST_FP16_AVAILABLE
}
} else {
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const float diff = KQ[j][i] - kqmax[j0/nwarps];
const float val = expf(diff);
kqsum_add += val;
#ifdef FAST_FP16_AVAILABLE
((half *) KQ[j])[i] = val;
#else
KQ[j][i] = val;
#endif // FAST_FP16_AVAILABLE
}
}
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
@@ -419,8 +489,7 @@ static __global__ void flash_attn_tile(
const int j = j0 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
const float tmp = KQ[j][k0 + k1];
KQ_k[j0/nwarps] = make_half2(tmp, tmp);
KQ_k[j0/nwarps] = __half2half2(((const half *)KQ[j])[k0 + k1]);
#else
KQ_k[j0/nwarps] = KQ[j][k0 + k1];
#endif // FAST_FP16_AVAILABLE

View File

@@ -162,6 +162,14 @@
#define GCN
#endif
#if defined(__gfx900__) || defined(__gfx906__)
#define GCN5
#endif
#if defined(__gfx803__)
#define GCN4
#endif
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx942__)
#define CDNA // For the entire family
#endif