mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	llama : fix compile warnings
This commit is contained in:
		| @@ -38,9 +38,9 @@ float tensor_sum_elements(struct ggml_tensor * tensor) { | ||||
|  | ||||
| #define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN" | ||||
|  | ||||
| #define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5ld x %5ld x %5ld, nb = (%5li, %5li, %5li) - ", #TENSOR, \ | ||||
| #define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \ | ||||
|         TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\ | ||||
|         TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ | ||||
|         (int) TENSOR->ne[0], (int) TENSOR->ne[1], (int) TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ | ||||
|     { float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); } | ||||
|  | ||||
| struct benchmark_params_struct { | ||||
| @@ -138,7 +138,7 @@ int main(int argc, char ** argv)  { | ||||
|     ctx = ggml_init(params); | ||||
|     if (!ctx) { | ||||
|         fprintf(stderr, "%s: ggml_init() failed\n", __func__); | ||||
|         return false; | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -1702,7 +1702,7 @@ void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array | ||||
|     } | ||||
| } | ||||
|  | ||||
| void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty) { | ||||
| void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) { | ||||
|     if (last_tokens_size == 0 || penalty == 1.0f) { | ||||
|         return; | ||||
|     } | ||||
| @@ -1731,7 +1731,7 @@ void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_dat | ||||
|     } | ||||
| } | ||||
|  | ||||
| void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { | ||||
| void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { | ||||
|     if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) { | ||||
|         return; | ||||
|     } | ||||
|   | ||||
							
								
								
									
										4
									
								
								llama.h
									
									
									
									
									
								
							
							
						
						
									
										4
									
								
								llama.h
									
									
									
									
									
								
							| @@ -192,10 +192,10 @@ extern "C" { | ||||
|     // Sampling functions | ||||
|  | ||||
|     /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. | ||||
|     LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty); | ||||
|     LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty); | ||||
|  | ||||
|     /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. | ||||
|     LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); | ||||
|     LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); | ||||
|  | ||||
|     /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. | ||||
|     LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates); | ||||
|   | ||||
| @@ -131,7 +131,7 @@ void test_repetition_penalty( | ||||
|     llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | ||||
|     llama_sample_softmax(nullptr, &candidates_p); | ||||
|     DUMP(&candidates_p); | ||||
|     llama_sample_repetition_penalty(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), penalty); | ||||
|     llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty); | ||||
|     llama_sample_softmax(nullptr, &candidates_p); | ||||
|     DUMP(&candidates_p); | ||||
|  | ||||
| @@ -160,7 +160,7 @@ void test_frequency_presence_penalty( | ||||
|     llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | ||||
|     llama_sample_softmax(nullptr, &candidates_p); | ||||
|     // DUMP(&candidates_p); | ||||
|     llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence); | ||||
|     llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence); | ||||
|     llama_sample_softmax(nullptr, &candidates_p); | ||||
|     // DUMP(&candidates_p); | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Georgi Gerganov
					Georgi Gerganov