mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	ggml backend interface wip
refactor ggml-cuda
This commit is contained in:
		
							
								
								
									
										8
									
								
								.github/workflows/build.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										8
									
								
								.github/workflows/build.yml
									
									
									
									
										vendored
									
									
								
							| @@ -308,13 +308,13 @@ jobs: | ||||
|           path: | | ||||
|             llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip | ||||
|  | ||||
|   windows-latest-cmake-cublas: | ||||
|   windows-latest-cmake-cuda: | ||||
|     runs-on: windows-latest | ||||
|  | ||||
|     strategy: | ||||
|       matrix: | ||||
|         cuda: ['12.1.0', '11.7.1'] | ||||
|         build: ['cublas'] | ||||
|         build: ['cuda'] | ||||
|  | ||||
|     steps: | ||||
|       - name: Clone | ||||
| @@ -333,7 +333,7 @@ jobs: | ||||
|         run: | | ||||
|           mkdir build | ||||
|           cd build | ||||
|           cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON | ||||
|           cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUDA=ON | ||||
|           cmake --build . --config Release | ||||
|  | ||||
|       - name: Get commit hash | ||||
| @@ -395,7 +395,7 @@ jobs: | ||||
|       - macOS-latest-make | ||||
|       - macOS-latest-cmake | ||||
|       - windows-latest-cmake | ||||
|       - windows-latest-cmake-cublas | ||||
|       - windows-latest-cmake-cuda | ||||
|  | ||||
|     steps: | ||||
|       - name: Download artifacts | ||||
|   | ||||
| @@ -67,7 +67,7 @@ endif() | ||||
| option(LLAMA_ACCELERATE                      "llama: enable Accelerate framework"               ON) | ||||
| option(LLAMA_BLAS                            "llama: use BLAS"                                  OFF) | ||||
| set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") | ||||
| option(LLAMA_CUBLAS                          "llama: use cuBLAS"                                OFF) | ||||
| option(LLAMA_CUDA                            "llama: use CUDA"                                  OFF) | ||||
| option(LLAMA_CUDA_FORCE_DMMV                 "llama: use dmmv instead of mmvq CUDA kernels"     OFF) | ||||
| set(LLAMA_CUDA_DMMV_X      "32" CACHE STRING "llama: x stride for dmmv CUDA kernels") | ||||
| set(LLAMA_CUDA_MMV_Y        "1" CACHE STRING "llama: y block size for mmv CUDA kernels") | ||||
| @@ -239,18 +239,18 @@ if (LLAMA_K_QUANTS) | ||||
|     endif() | ||||
| endif() | ||||
|  | ||||
| if (LLAMA_CUBLAS) | ||||
| if (LLAMA_CUDA) | ||||
|     cmake_minimum_required(VERSION 3.17) | ||||
|  | ||||
|     find_package(CUDAToolkit) | ||||
|     if (CUDAToolkit_FOUND) | ||||
|         message(STATUS "cuBLAS found") | ||||
|         message(STATUS "CUDA found") | ||||
|  | ||||
|         enable_language(CUDA) | ||||
|  | ||||
|         set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h) | ||||
|  | ||||
|         add_compile_definitions(GGML_USE_CUBLAS) | ||||
|         add_compile_definitions(GGML_USE_CUDA) | ||||
|         if (LLAMA_CUDA_FORCE_DMMV) | ||||
|             add_compile_definitions(GGML_CUDA_FORCE_DMMV) | ||||
|         endif() | ||||
| @@ -280,7 +280,7 @@ if (LLAMA_CUBLAS) | ||||
|     message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}") | ||||
|  | ||||
|     else() | ||||
|         message(WARNING "cuBLAS not found") | ||||
|         message(WARNING "CUDA not found") | ||||
|     endif() | ||||
| endif() | ||||
|  | ||||
|   | ||||
							
								
								
									
										29
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										29
									
								
								Makefile
									
									
									
									
									
								
							| @@ -55,6 +55,12 @@ else | ||||
| 	CXXFLAGS += -DNDEBUG | ||||
| endif | ||||
|  | ||||
| ifdef LLAMA_SANITIZE | ||||
| 	CFLAGS   += -g -fsanitize=$(LLAMA_SANITIZE) -fno-omit-frame-pointer | ||||
| 	CXXFLAGS += -g -fsanitize=$(LLAMA_SANITIZE) -fno-omit-frame-pointer | ||||
| 	LDFLAGS  += -g -fsanitize=$(LLAMA_SANITIZE) | ||||
| endif | ||||
|  | ||||
| ifdef LLAMA_SERVER_VERBOSE | ||||
| 	CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE) | ||||
| endif | ||||
| @@ -163,13 +169,16 @@ ifdef LLAMA_BLIS | ||||
| 	LDFLAGS += -lblis -L/usr/local/lib | ||||
| endif # LLAMA_BLIS | ||||
|  | ||||
| ifdef LLAMA_CUBLAS | ||||
| 	CFLAGS    += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include | ||||
| 	CXXFLAGS  += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include | ||||
| ifdef LLAMA_CUDA | ||||
| 	CFLAGS    += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include | ||||
| 	CXXFLAGS  += -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include | ||||
| 	LDFLAGS   += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib | ||||
| 	OBJS      += ggml-cuda.o | ||||
| 	NVCC      = nvcc | ||||
| 	NVCCFLAGS = --forward-unknown-to-host-compiler | ||||
| ifdef LLAMA_DEBUG | ||||
| 	NVCCFLAGS += -lineinfo | ||||
| endif # LLAMA_DEBUG | ||||
| ifdef CUDA_DOCKER_ARCH | ||||
| 	NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH) | ||||
| else | ||||
| @@ -198,10 +207,9 @@ ifdef LLAMA_CUDA_KQUANTS_ITER | ||||
| else | ||||
| 	NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2 | ||||
| endif | ||||
|  | ||||
| ggml-cuda.o: ggml-cuda.cu ggml-cuda.h | ||||
| ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml-cuda-kern.h ggml-cuda-quant.h | ||||
| 	$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@ | ||||
| endif # LLAMA_CUBLAS | ||||
| endif # LLAMA_CUDA | ||||
|  | ||||
| ifdef LLAMA_CLBLAST | ||||
| 	CFLAGS   += -DGGML_USE_CLBLAST | ||||
| @@ -275,6 +283,9 @@ $(info I CXXFLAGS: $(CXXFLAGS)) | ||||
| $(info I LDFLAGS:  $(LDFLAGS)) | ||||
| $(info I CC:       $(CCV)) | ||||
| $(info I CXX:      $(CXXV)) | ||||
| ifdef LLAMA_CUDA | ||||
| $(info I NVCC:     $(NVCCV)) | ||||
| endif # LLAMA_CUDA | ||||
| $(info ) | ||||
|  | ||||
| # | ||||
| @@ -284,6 +295,12 @@ $(info ) | ||||
| ggml.o: ggml.c ggml.h ggml-cuda.h | ||||
| 	$(CC)  $(CFLAGS)   -c $< -o $@ | ||||
|  | ||||
| # temporary, probably will be added to ggml.c | ||||
| ggml-backend.o: ggml-backend.c ggml-backend.h ggml.h | ||||
| 	$(CC)  $(CFLAGS)   -c $< -o $@ | ||||
|  | ||||
| OBJS += ggml-backend.o | ||||
|  | ||||
| llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h | ||||
| 	$(CXX) $(CXXFLAGS) -c $< -o $@ | ||||
|  | ||||
|   | ||||
| @@ -1,46 +1,14 @@ | ||||
| #ifndef _GNU_SOURCE | ||||
| #define _GNU_SOURCE | ||||
| #endif | ||||
|  | ||||
| #include "common.h" | ||||
| #include "llama.h" | ||||
| #include "build-info.h" | ||||
|  | ||||
| #include <cassert> | ||||
| #include <cinttypes> | ||||
| #include <cmath> | ||||
| #include <cstdio> | ||||
| #include <cstring> | ||||
| #include <ctime> | ||||
| #include <fstream> | ||||
| #include <iostream> | ||||
| #include <stdio.h> | ||||
| #include <string> | ||||
| #include <vector> | ||||
|  | ||||
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) | ||||
| #include <signal.h> | ||||
| #include <unistd.h> | ||||
| #elif defined (_WIN32) | ||||
| #define WIN32_LEAN_AND_MEAN | ||||
| #define NOMINMAX | ||||
| #include <windows.h> | ||||
| #include <signal.h> | ||||
| #endif | ||||
| #include "llama.h" | ||||
|  | ||||
|  | ||||
|  | ||||
| int main(int argc, char ** argv) | ||||
| { | ||||
|     gpt_params params; | ||||
|  | ||||
|     //--------------------------------- | ||||
|     // Print help : | ||||
|     //--------------------------------- | ||||
|  | ||||
|     if ( argc == 1 || argv[1][0] == '-' ) | ||||
|     { | ||||
|         printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] ); | ||||
|         return 1 ; | ||||
| void generate_sequence(llama_context * ctx, int n_ctx, const std::vector<llama_token>& prompt_tokens, float temperature) { | ||||
|     // print the tokens from the prompt | ||||
|     for (llama_token id : prompt_tokens) { | ||||
|         printf("%s", llama_token_to_str(ctx, id)); | ||||
|     } | ||||
|  | ||||
|     //--------------------------------- | ||||
| @@ -107,75 +75,164 @@ int main(int argc, char ** argv) | ||||
|  | ||||
|     fflush(stdout); | ||||
|  | ||||
|     // the maximum number of tokens to generate at a time | ||||
|     // TODO: not supported, remove | ||||
|     const int CUDA_MAX_TOKENS = 1; | ||||
|     llama_token tokens_out[CUDA_MAX_TOKENS]; | ||||
|  | ||||
|     //--------------------------------- | ||||
|     // Main prediction loop : | ||||
|     //--------------------------------- | ||||
|     // current position in the context window | ||||
|     int n_past = 0; | ||||
|  | ||||
|     // The LLM keeps a contextual cache memory of previous token evaluation. | ||||
|     // Usually, once this cache is full, it is required to recompute a compressed context based on previous | ||||
|     // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist | ||||
|     // example, we will just stop the loop once this cache is full or once an end of stream is detected. | ||||
|     // number of tokens to generate | ||||
|     int n_tokens_out; | ||||
|  | ||||
|     while ( llama_get_kv_cache_token_count( ctx ) < max_context_size ) | ||||
|     { | ||||
|         //--------------------------------- | ||||
|         // Evaluate the tokens : | ||||
|         //--------------------------------- | ||||
|     // list of tokens to evaluate | ||||
|     // note that at most llama_context_params::n_batch tokens can be evaluated at a time | ||||
|     std::vector<llama_token> token_list = prompt_tokens; | ||||
|  | ||||
|         if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) ) | ||||
|         { | ||||
|             fprintf( stderr,  "%s : failed to eval\n" , __func__ ); | ||||
|             return 1; | ||||
|     while (n_past < n_ctx) { | ||||
|         // evaluate the tokens | ||||
|  | ||||
|         // llama_eval generates one token at a time | ||||
|         n_tokens_out = 1; | ||||
|  | ||||
|         // number of threads to use for CPU evaluation - ignored if compiled with CUDA support | ||||
|         const int n_threads = 4; | ||||
|         // note: llama_eval is not compatible with GPU sampling | ||||
|         if (llama_eval(ctx, token_list.data(), token_list.size(), n_past, n_threads)) { | ||||
|             fprintf(stderr, "%s : failed to eval\n", __func__ ); | ||||
|             exit(1); | ||||
|         } | ||||
|  | ||||
|         tokens_list.clear(); | ||||
|  | ||||
|         //--------------------------------- | ||||
|         // Select the best prediction : | ||||
|         //--------------------------------- | ||||
|  | ||||
|         llama_token new_token_id = 0; | ||||
|  | ||||
|         auto logits  = llama_get_logits( ctx ); | ||||
|         auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens) | ||||
|         // perform sampling on the CPU | ||||
|         float * logits  = llama_get_logits(ctx); | ||||
|         auto n_vocab = llama_n_vocab(ctx); | ||||
|  | ||||
|         // initialize candidate array from logits | ||||
|         std::vector<llama_token_data> candidates; | ||||
|         candidates.reserve( n_vocab ); | ||||
|  | ||||
|         for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ ) | ||||
|         { | ||||
|             candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } ); | ||||
|         candidates.reserve(n_vocab); | ||||
|         for(llama_token token_id = 0 ; token_id < n_vocab ; token_id++) { | ||||
|             candidates.push_back(llama_token_data{ token_id, logits[token_id], 0.0f}); | ||||
|         } | ||||
|  | ||||
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | ||||
|  | ||||
|         // Select it using the "Greedy sampling" method : | ||||
|         new_token_id = llama_sample_token_greedy( ctx , &candidates_p ); | ||||
|         // sample token | ||||
|         llama_sample_temperature(ctx, &candidates_p, temperature); | ||||
|         tokens_out[0] = llama_sample_token(ctx, &candidates_p); | ||||
|  | ||||
|         // increment the position in the context window | ||||
|         n_past += token_list.size() + n_tokens_out - 1; | ||||
|  | ||||
|         token_list.clear(); | ||||
|  | ||||
|         // print the new tokens | ||||
|         for (int i = 0; i < n_tokens_out; i++) { | ||||
|             llama_token new_token_id = tokens_out[i]; | ||||
|  | ||||
|             // is it an end of stream ? | ||||
|         if ( new_token_id == llama_token_eos() ) | ||||
|         { | ||||
|             if (new_token_id == llama_token_eos()) { | ||||
|                 fprintf(stderr, " [end of text]\n"); | ||||
|             break; | ||||
|                 //return; | ||||
|             } | ||||
|  | ||||
|         // Print the new token : | ||||
|         printf( "%s" , llama_token_to_str( ctx , new_token_id ) ); | ||||
|         fflush( stdout ); | ||||
|             // print the new token : | ||||
|             printf("%s", llama_token_to_str(ctx, new_token_id)); | ||||
|         } | ||||
|         fflush(stdout); | ||||
|  | ||||
|         // Push this new token for next evaluation : | ||||
|         tokens_list.push_back( new_token_id ); | ||||
|         // push the last new token for the next evaluation | ||||
|         token_list.push_back(tokens_out[n_tokens_out - 1]); | ||||
|     } | ||||
| } | ||||
|  | ||||
|     } // wend of main loop | ||||
| int main(int argc, char ** argv) { | ||||
|     if (argc < 2 || argv[1][0] == '-') { | ||||
|         printf("usage: %s <model> <n_ctx> <n_gens> <temp> [prompt]\n", argv[0]); | ||||
|         printf(" note: passing a temp parameter will enable GPU sampling\n"); | ||||
|         return 1 ; | ||||
|     } | ||||
|  | ||||
|     llama_free( ctx ); | ||||
|     llama_free_model( model ); | ||||
|     std::string model = argv[1]; | ||||
|     struct llama_context_params lparams = llama_context_default_params(); | ||||
|  | ||||
|     if (argc >= 3) { | ||||
|         lparams.n_ctx = std::stoi(argv[2]); | ||||
|     } else { | ||||
|         lparams.n_ctx = 512; | ||||
|     } | ||||
|  | ||||
|     int n_gens; | ||||
|     if (argc >= 4) { | ||||
|         n_gens = std::stoi(argv[3]); | ||||
|     } else { | ||||
|         n_gens = 1; | ||||
|     } | ||||
|  | ||||
|     float temperature; | ||||
|  | ||||
|     if (argc >= 5) { | ||||
|         temperature = std::stof(argv[4]); | ||||
|     } else { | ||||
|         temperature = 0.8f; | ||||
|     } | ||||
|  | ||||
|     std::string prompt; | ||||
|     if (argc >= 6) { | ||||
|         prompt = argv[5]; | ||||
|     } else { | ||||
|         prompt = "Hello my name is"; | ||||
|     } | ||||
|  | ||||
|     // initialize llama.cpp | ||||
|     bool numa = false; | ||||
|     llama_init_backend(numa); | ||||
|  | ||||
|     llama_model * lmodel  = llama_load_model_from_file(model.c_str(), lparams); | ||||
|     if (lmodel == NULL) { | ||||
|         fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str()); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     llama_context * ctx = llama_new_context_with_model(lmodel, lparams); | ||||
|     if (ctx == NULL) { | ||||
|         fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, model.c_str()); | ||||
|         llama_free_model(lmodel); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     // tokenize the prompt | ||||
|     std::vector<llama_token> token_list(lparams.n_ctx); | ||||
|     int prompt_tokens = llama_tokenize(ctx, prompt.c_str(), token_list.data(), token_list.size(), true); | ||||
|     if (prompt_tokens <= 0) { | ||||
|         fprintf(stderr, "%s: error: unable to tokenize prompt\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     token_list.resize(prompt_tokens); | ||||
|  | ||||
|     const int max_context_size     = llama_n_ctx(ctx); | ||||
|     const int max_tokens_list_size = max_context_size - 4 ; | ||||
|  | ||||
|     if ((int)token_list.size() > max_tokens_list_size) { | ||||
|         fprintf( stderr, "%s: error: prompt too long (%d tokens, max %d)\n" , | ||||
|              __func__, (int)token_list.size(), max_tokens_list_size ); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     fprintf(stderr, "\n\n"); | ||||
|  | ||||
|     // generate the sequences | ||||
|     for (int i = 0; i < n_gens; i++) { | ||||
|         printf("==== GENERATION %d ====\n", i + 1); | ||||
|         generate_sequence(ctx, max_context_size, token_list, temperature); | ||||
|         printf("\n\n"); | ||||
|     } | ||||
|  | ||||
|     llama_print_timings(ctx); | ||||
|     llama_free(ctx); | ||||
|  | ||||
|     llama_backend_free(); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
| // EOF | ||||
|   | ||||
							
								
								
									
										435
									
								
								ggml-backend.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										435
									
								
								ggml-backend.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,435 @@ | ||||
| #include "ggml-backend.h" | ||||
| #include <assert.h> | ||||
| #include <stdarg.h> | ||||
| #include <stdio.h> | ||||
| #include <stdlib.h> | ||||
| #include <string.h> | ||||
|  | ||||
| #define UNUSED(x) (void)(x) | ||||
|  | ||||
| // backend buffer | ||||
|  | ||||
| struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors) { | ||||
|     struct ggml_buffer buffer; | ||||
|     buffer.mem_size = ggml_tensor_overhead() * max_tensors; | ||||
|     buffer.mem_buffer = malloc(buffer.mem_size); | ||||
|     buffer.backend = backend; | ||||
|     // size += 128 * max_tensors; // alignment overhead | ||||
|     buffer.backend_buffer = backend->interface->alloc_buffer(backend->context, size); | ||||
|     return buffer; | ||||
| } | ||||
|  | ||||
| void ggml_backend_free_buffer(struct ggml_buffer * buffer) { | ||||
|     struct ggml_backend * backend = buffer->backend; | ||||
|     backend->interface->free_buffer(backend->context, buffer->backend_buffer); | ||||
|     free(buffer->mem_buffer); | ||||
| } | ||||
|  | ||||
| // backend copy | ||||
|  | ||||
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | ||||
|     if (a->type != b->type) { | ||||
|         return false; | ||||
|     } | ||||
|     for (int i = 0; i < GGML_MAX_DIMS; i++) { | ||||
|         if (a->ne[i] != b->ne[i]) { | ||||
|             return false; | ||||
|         } | ||||
|         if (a->nb[i] != b->nb[i]) { | ||||
|             return false; | ||||
|         } | ||||
|     } | ||||
|     return true; | ||||
| } | ||||
|  | ||||
| void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src) { | ||||
|     //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); | ||||
|     //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); | ||||
|     GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); | ||||
|  | ||||
|     // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); | ||||
|  | ||||
|     if (src == dst) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     if (dst->backend->interface->cpy_tensor_from != NULL) { | ||||
|         dst->backend->interface->cpy_tensor_from(dst->backend->context, src, dst); | ||||
|     } else if (src->backend->interface->cpy_tensor_to != NULL) { | ||||
|         src->backend->interface->cpy_tensor_to(src->backend->context, src, dst); | ||||
|     } else { | ||||
|         // not ideal, but shouldn't be hit when copying from/to CPU | ||||
|         // TODO: print a performance warning in debug builds | ||||
|         size_t nbytes = ggml_nbytes(src); | ||||
|         void * data = malloc(nbytes); | ||||
|         ggml_backend_get_tensor(src, data, 0, nbytes); | ||||
|         ggml_backend_set_tensor(dst, data, 0, nbytes); | ||||
|         free(data); | ||||
|     } | ||||
| } | ||||
|  | ||||
| // backend CPU | ||||
|  | ||||
| struct ggml_backend_cpu_context { | ||||
|     int n_threads; | ||||
|     void * work_data; | ||||
|     size_t work_size; | ||||
| }; | ||||
|  | ||||
| static const char * ggml_backend_cpu_name(ggml_backend_context_t ctx) { | ||||
|     return "CPU"; | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_free_context(ggml_backend_context_t ctx) { | ||||
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; | ||||
|     free(cpu_ctx->work_data); | ||||
|     free(ctx); | ||||
| } | ||||
|  | ||||
| struct cpu_backend_buffer { | ||||
|     void * data; | ||||
|     size_t offset; | ||||
|     size_t size; | ||||
| }; | ||||
|  | ||||
| static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 | ||||
|  | ||||
| static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { | ||||
|     assert(alignment && !(alignment & (alignment - 1))); // power of 2 | ||||
|     size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; | ||||
|     return offset + align; | ||||
| } | ||||
|  | ||||
| static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_context_t ctx, size_t size) { | ||||
|     struct cpu_backend_buffer * buffer = malloc(sizeof(struct cpu_backend_buffer)); | ||||
|     buffer->data = malloc(size); | ||||
|     buffer->offset = aligned_offset(buffer->data, 0, TENSOR_ALIGNMENT); | ||||
|     buffer->size = size; | ||||
|     return buffer; | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_free_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) { | ||||
|     struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; | ||||
|     free(cpu_buffer->data); | ||||
|     free(cpu_buffer); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_reset_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) { | ||||
|     struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; | ||||
|     cpu_buffer->offset = aligned_offset(cpu_buffer->data, 0, TENSOR_ALIGNMENT); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_alloc_tensor(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | ||||
|     struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; | ||||
|  | ||||
|     // TODO: make this error recoverable | ||||
|     if (cpu_buffer->offset + ggml_nbytes(tensor) > cpu_buffer->size) { | ||||
|         fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n", | ||||
|                 __func__, ggml_nbytes(tensor), cpu_buffer->size - cpu_buffer->offset); | ||||
|         GGML_ASSERT(false); | ||||
|     } | ||||
|  | ||||
|     tensor->data = (char*)cpu_buffer->data + cpu_buffer->offset; | ||||
|     cpu_buffer->offset = aligned_offset(cpu_buffer->data, cpu_buffer->offset + ggml_nbytes(tensor), TENSOR_ALIGNMENT); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_set_tensor_async(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | ||||
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); | ||||
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | ||||
|  | ||||
|     memcpy((char *)tensor->data + offset, data, size); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_get_tensor_async(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | ||||
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); | ||||
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | ||||
|  | ||||
|     memcpy(data, (const char *)tensor->data + offset, size); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_synchronize(ggml_backend_context_t ctx) { | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) { | ||||
|     ggml_backend_get_tensor(src, dst->data, 0, ggml_nbytes(src)); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) { | ||||
|     ggml_backend_set_tensor(dst, src->data, 0, ggml_nbytes(src)); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| struct ggml_backend_cpu_plan { | ||||
|     struct ggml_cplan cplan; | ||||
|     struct ggml_cgraph cgraph; | ||||
| }; | ||||
|  | ||||
| static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) { | ||||
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; | ||||
|  | ||||
|     struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan)); | ||||
|  | ||||
|     cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | ||||
|     cpu_plan->cgraph = *cgraph; | ||||
|  | ||||
|     if (cpu_plan->cplan.work_size > 0) { | ||||
|         cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); | ||||
|     } | ||||
|  | ||||
|     return cpu_plan; | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_graph_plan_free(ggml_backend_context_t ctx, ggml_graph_plan_t plan) { | ||||
|     struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; | ||||
|  | ||||
|     free(cpu_plan->cplan.work_data); | ||||
|     free(cpu_plan); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_graph_plan_compute(ggml_backend_context_t ctx, ggml_graph_plan_t plan) { | ||||
|     struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; | ||||
|  | ||||
|     ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_graph_compute(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) { | ||||
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; | ||||
|  | ||||
|     struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | ||||
|  | ||||
|     if (cpu_ctx->work_size < cplan.work_size) { | ||||
|         // TODO: may be faster to free and use malloc to avoid the copy | ||||
|         cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); | ||||
|         cpu_ctx->work_size = cplan.work_size; | ||||
|     } | ||||
|  | ||||
|     cplan.work_data = cpu_ctx->work_data; | ||||
|  | ||||
|     ggml_graph_compute(cgraph, &cplan); | ||||
| } | ||||
|  | ||||
| static struct ggml_backend_interface cpu_backend_interface = { | ||||
|     /* .get_name            = */ ggml_backend_cpu_name, | ||||
|     /* .free_context        = */ ggml_backend_cpu_free_context, | ||||
|     /* .alloc_buffer        = */ ggml_backend_cpu_alloc_buffer, | ||||
|     /* .free_buffer         = */ ggml_backend_cpu_free_buffer, | ||||
|     /* .reset_buffer        = */ ggml_backend_cpu_reset_buffer, | ||||
|     /* .alloc_tensor        = */ ggml_backend_cpu_alloc_tensor, | ||||
|     /* .set_tensor_async    = */ ggml_backend_cpu_set_tensor_async, | ||||
|     /* .get_tensor_async    = */ ggml_backend_cpu_get_tensor_async, | ||||
|     /* .synchronize         = */ ggml_backend_cpu_synchronize, | ||||
|     /* .cpy_tensor_from     = */ ggml_backend_cpu_cpy_tensor_from, | ||||
|     /* .cpy_tensor_to       = */ ggml_backend_cpu_cpy_tensor_to, | ||||
|     /* .graph_plan_create   = */ ggml_backend_cpu_graph_plan_create, | ||||
|     /* .graph_plan_free     = */ ggml_backend_cpu_graph_plan_free, | ||||
|     /* .graph_plan_compute  = */ ggml_backend_cpu_graph_plan_compute, | ||||
|     /* .graph_compute       = */ ggml_backend_cpu_graph_compute | ||||
| }; | ||||
|  | ||||
| struct ggml_backend ggml_backend_cpu_init(void) { | ||||
|     struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); | ||||
|     ctx->n_threads = GGML_DEFAULT_N_THREADS; | ||||
|     ctx->work_data = NULL; | ||||
|     ctx->work_size = 0; | ||||
|  | ||||
|     struct ggml_backend cpu_backend = { | ||||
|         /* .interface = */ &cpu_backend_interface, | ||||
|         /* .context   = */ ctx | ||||
|     }; | ||||
|     return cpu_backend; | ||||
| } | ||||
|  | ||||
| void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads) { | ||||
|     struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; | ||||
|     ctx->n_threads = n_threads; | ||||
| } | ||||
|  | ||||
| // splits | ||||
|  | ||||
| struct ggml_graph_splits ggml_graph_split_init(void) { | ||||
|     struct ggml_graph_splits splits = {0}; | ||||
|     return splits; | ||||
| } | ||||
|  | ||||
| // TODO: this can be removed after allocating the graphs in a ggml_context | ||||
| void ggml_graph_splits_free(struct ggml_graph_splits * splits) { | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         if (splits->splits[i].graph) { | ||||
|             free(splits->splits[i].graph); | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, va_list args) { | ||||
|     GGML_ASSERT(splits->n_splits < GGML_MAX_SPLITS); | ||||
|  | ||||
|     struct ggml_graph_split * split = &splits->splits[splits->n_splits]; | ||||
|  | ||||
|     if ((*inputs[0])->backend == ggml_get_ctx_backend(ctx)) { | ||||
|         if (splits->n_splits > 0) { | ||||
|             char name[GGML_MAX_NAME - 1]; // silence -Wformat-truncation | ||||
|             vsnprintf(name, sizeof(name), fmt, args); | ||||
|             char new_name[GGML_MAX_NAME]; | ||||
|             snprintf(new_name, sizeof(new_name), "%s,%s", splits->splits[splits->n_splits - 1].name, name); | ||||
|             strcpy(splits->splits[splits->n_splits - 1].name, new_name); | ||||
|             return; | ||||
|         } | ||||
|         // always add the first split | ||||
|         int i = 0; | ||||
|         while (inputs[i] != NULL) { | ||||
|             GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); | ||||
|             split->src_inputs[i] = *inputs[i]; | ||||
|             split->dst_inputs[i] = *inputs[i]; | ||||
|             i++; | ||||
|         } | ||||
|         split->src_inputs[i] = NULL; | ||||
|         split->dst_inputs[i] = NULL; | ||||
|     } else { | ||||
|         int i = 0; | ||||
|         while (inputs[i] != NULL) { | ||||
|             GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); | ||||
|             split->src_inputs[i] = *inputs[i]; | ||||
|             split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]); | ||||
|             // TODO: maybe support different layings in ggml_backend_cpy_tensor instead | ||||
|             for (int j = 0; j < GGML_MAX_DIMS; j++) { | ||||
|                 split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j]; | ||||
|             } | ||||
|             ggml_set_name(split->dst_inputs[i], ggml_get_name(*inputs[i])); | ||||
|             *inputs[i] = split->dst_inputs[i]; | ||||
|             i++; | ||||
|         } | ||||
|         split->src_inputs[i] = NULL; | ||||
|         split->dst_inputs[i] = NULL; | ||||
|     } | ||||
|  | ||||
|     vsnprintf(split->name, GGML_MAX_NAME, fmt, args); | ||||
|     split->graph = NULL; | ||||
|     splits->n_splits++; | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** input, struct ggml_context * ctx, const char * fmt, ...) { | ||||
|     va_list args; | ||||
|     va_start(args, fmt); | ||||
|     ggml_graph_splits_add_n_va(splits, input, ctx, fmt, args); | ||||
|     va_end(args); | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...) { | ||||
|     va_list args; | ||||
|     va_start(args, fmt); | ||||
|     ggml_graph_splits_add_n_va(splits, (struct ggml_tensor**[2]){ input, NULL }, ctx, fmt, args); | ||||
|     va_end(args); | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output) { | ||||
|     struct ggml_tensor *last_outputs[2] = { output, NULL }; | ||||
|     struct ggml_tensor ** outputs; | ||||
|  | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         struct ggml_graph_split * split = &splits->splits[i]; | ||||
|  | ||||
|         if (i < splits->n_splits - 1) { | ||||
|             outputs = splits->splits[i + 1].src_inputs; | ||||
|         } else { | ||||
|             outputs = last_outputs; | ||||
|         } | ||||
|  | ||||
|         // build the graph | ||||
|         // TODO: allocate graphs in context | ||||
|         split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph)); | ||||
|         memset(split->graph, 0, sizeof(struct ggml_cgraph)); | ||||
|         // *split->graph = ggml_build_forward_range(output, split->input); | ||||
|         // *split->graph = ggml_build_forward(output); | ||||
|         for (int j = 0; outputs[j] != NULL; j++) { | ||||
|             ggml_build_forward_expand(split->graph, outputs[j]); | ||||
|         } | ||||
|  | ||||
|         for (int j = 1; j < split->graph->n_nodes; j++) { | ||||
|             if (split->graph->nodes[j]->backend != split->graph->nodes[0]->backend) { | ||||
|                 fprintf(stderr, "split %s: node %s has different backend (%s) than the first node (%s)\n", | ||||
|                     split->name, split->graph->nodes[j]->name, | ||||
|                     ggml_backend_name(split->graph->nodes[j]->backend), | ||||
|                     ggml_backend_name(split->graph->nodes[0]->backend)); | ||||
|             } | ||||
|         } | ||||
|         for (int j = 1; j < split->graph->n_leafs; j++) { | ||||
|             if (split->graph->leafs[j]->backend != split->graph->leafs[0]->backend) { | ||||
|                 fprintf(stderr, "split %s: leaf %s has different backend (%s) than the first leaf (%s)\n", | ||||
|                     split->name, split->graph->leafs[j]->name, | ||||
|                     ggml_backend_name(split->graph->leafs[j]->backend), | ||||
|                     ggml_backend_name(split->graph->leafs[0]->backend)); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // close graphs | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         struct ggml_graph_split * split = &splits->splits[i]; | ||||
|         ggml_graph_close(split->graph); | ||||
|     } | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_compute(struct ggml_graph_splits * splits) { | ||||
|     uint64_t copy_us = 0; | ||||
|     uint64_t compute_cpu_us = 0; | ||||
|     uint64_t compute_gpu_us = 0; | ||||
|     int n_nodes = 0; | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         struct ggml_graph_split * split = &splits->splits[i]; | ||||
|  | ||||
|         //printf("computing split %i (%s) on backend %s (%i nodes)\n", i, split->name, ggml_backend_name(split->dst_inputs[0]->backend), split->graph->n_nodes); | ||||
|  | ||||
|         // copy the input tensor to the backend | ||||
|         uint64_t copy_start_us = ggml_time_us(); | ||||
|         for (int j = 0; split->src_inputs[j] != NULL; j++) { | ||||
|             if (split->src_inputs[j] != split->dst_inputs[j]) { | ||||
|                 //printf("\tcopying tensor %d (%s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_nbytes(split->src_inputs[j])); | ||||
|                 ggml_backend_cpy_tensor(split->dst_inputs[j], split->src_inputs[j]); | ||||
|             } | ||||
|         } | ||||
|         ggml_backend_synchronize(split->dst_inputs[0]->backend); | ||||
|         copy_us += ggml_time_us() - copy_start_us; | ||||
|  | ||||
| #if 0 | ||||
|         char split_filename[GGML_MAX_NAME]; | ||||
|         snprintf(split_filename, GGML_MAX_NAME, "split_%i.dot", i); | ||||
|         ggml_graph_dump_dot(split->graph, NULL, split_filename); | ||||
| #endif | ||||
|         uint64_t start = ggml_time_us(); | ||||
|         ggml_backend_graph_compute(split->dst_inputs[0]->backend, split->graph); | ||||
|         ggml_backend_synchronize(split->dst_inputs[0]->backend); | ||||
|         uint64_t end = ggml_time_us(); | ||||
|         if (strcmp(ggml_backend_name(split->dst_inputs[0]->backend), "CPU") == 0) { | ||||
|             compute_cpu_us += end - start; | ||||
|         } else { | ||||
|             compute_gpu_us += end - start; | ||||
|         } | ||||
|  | ||||
|         n_nodes += split->graph->n_nodes; | ||||
|     } | ||||
|  | ||||
|     //printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0); | ||||
|     //exit(0); | ||||
| } | ||||
							
								
								
									
										129
									
								
								ggml-backend.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								ggml-backend.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,129 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include "ggml.h" | ||||
|  | ||||
| #ifdef  __cplusplus | ||||
| extern "C" { | ||||
| #endif | ||||
|  | ||||
|     typedef void * ggml_graph_plan_t; | ||||
|     typedef void * ggml_backend_context_t; | ||||
|     typedef void * ggml_backend_buffer_t; | ||||
|     struct ggml_backend; | ||||
|  | ||||
|     // buffers have space for the tensor structs in host memory, and tensor data in backend-specific memory | ||||
|     struct ggml_buffer { | ||||
|         // host memory | ||||
|         size_t mem_size; | ||||
|         void * mem_buffer; | ||||
|  | ||||
|         // tensor data | ||||
|         struct ggml_backend * backend; | ||||
|         ggml_backend_buffer_t backend_buffer; // backend-specific data | ||||
|     }; | ||||
|  | ||||
|     struct ggml_backend_interface { | ||||
|         const char * (*get_name)(ggml_backend_context_t ctx); | ||||
|  | ||||
|         void (*free_context)(ggml_backend_context_t ctx); | ||||
|  | ||||
|         // buffers | ||||
|         ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_context_t ctx, size_t size); | ||||
|         void                  (*free_buffer) (ggml_backend_context_t ctx, ggml_backend_buffer_t buffer); | ||||
|         void                  (*reset_buffer)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer); | ||||
|         void                  (*alloc_tensor)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); | ||||
|  | ||||
|         // TODO: pinned buffers for faster transfers between host and device | ||||
|  | ||||
|         // tensor data access | ||||
|         // these functions can be asynchronous. helper functions are provided for synchronous access that automatically call synchronize | ||||
|         void (*set_tensor_async)(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); | ||||
|         void (*get_tensor_async)(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); | ||||
|         void (*synchronize)(ggml_backend_context_t ctx); | ||||
|  | ||||
|         // (optional) copy tensor between different backends, allow for single-copy tranfers | ||||
|         void (*cpy_tensor_from)(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst); | ||||
|         void (*cpy_tensor_to)  (ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst); | ||||
|  | ||||
|  | ||||
|         // compute graph with a plan | ||||
|         ggml_graph_plan_t (*graph_plan_create) (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph); | ||||
|         void              (*graph_plan_free)   (ggml_backend_context_t ctx, ggml_graph_plan_t plan); | ||||
|         void              (*graph_plan_compute)(ggml_backend_context_t ctx, ggml_graph_plan_t plan); | ||||
|  | ||||
|         // compute graph without a plan | ||||
|         void              (*graph_compute)     (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph); | ||||
|  | ||||
|         // check if a backend supports a given operation | ||||
|         // this could be used to fallback automatically to the CPU backend if a backend doesn't support an operation | ||||
|         // bool (*supports_op)(ggml_backend_context_t ctx, struct ggml_tensor * op); | ||||
|     }; | ||||
|  | ||||
|     struct ggml_backend { | ||||
|         struct ggml_backend_interface * interface; | ||||
|         ggml_backend_context_t context; | ||||
|     }; | ||||
|  | ||||
|     // backend helper functions | ||||
|     static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface->get_name(backend->context); } | ||||
|     static inline void ggml_backend_free_context(struct ggml_backend * backend) { backend->interface->free_context(backend->context); } | ||||
|     static inline void ggml_backend_set_tensor_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); } | ||||
|     static inline void ggml_backend_get_tensor_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); } | ||||
|     static inline void ggml_backend_set_tensor(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); } | ||||
|     static inline void ggml_backend_get_tensor(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); } | ||||
|     static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface->synchronize(backend->context); } | ||||
|     static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface->graph_plan_create(backend->context, cgraph); } | ||||
|     static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_free(backend->context, plan); } | ||||
|     static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_compute(backend->context, plan); } | ||||
|     static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface->graph_compute(backend->context, cgraph); } | ||||
|  | ||||
|     // buffer and tensor allocation | ||||
|     GGML_API struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors); | ||||
|     GGML_API void               ggml_backend_free_buffer(struct ggml_buffer * buffer); | ||||
|     static inline void          ggml_backend_reset_buffer(struct ggml_buffer * buffer) { buffer->backend->interface->reset_buffer(buffer->backend->context, buffer->backend_buffer); } | ||||
|     static inline void          ggml_backend_alloc_tensor(struct ggml_buffer * buffer, struct ggml_tensor * tensor) { buffer->backend->interface->alloc_tensor(buffer->backend->context, buffer->backend_buffer, tensor); } | ||||
|  | ||||
|     // tensor copy between different backends | ||||
|     GGML_API void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src); | ||||
|  | ||||
|     // CPU backend | ||||
|     GGML_API struct ggml_backend ggml_backend_cpu_init(void); | ||||
|     GGML_API void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads); | ||||
|  | ||||
|     /////////////////////////// | ||||
|  | ||||
|     // graph splitting | ||||
|     #define GGML_MAX_SPLITS 200 | ||||
|     #define GGML_MAX_SPLIT_INPUTS 4 | ||||
|  | ||||
|     struct ggml_graph_split { | ||||
|         char name[GGML_MAX_NAME]; | ||||
|         struct ggml_tensor * src_inputs[GGML_MAX_SPLIT_INPUTS + 1]; | ||||
|         struct ggml_tensor * dst_inputs[GGML_MAX_SPLIT_INPUTS + 1]; | ||||
|         struct ggml_cgraph * graph; | ||||
|     }; | ||||
|  | ||||
|     // TODO: this shouldn't be fixed size, allocate from ggml_context | ||||
|     struct ggml_graph_splits { | ||||
|         int n_splits; | ||||
|         struct ggml_graph_split splits[GGML_MAX_SPLITS]; | ||||
|     }; | ||||
|  | ||||
|     // TODO: allocate in ggml_context | ||||
|     struct ggml_graph_splits ggml_graph_split_init(void); | ||||
|     // this won't be needed once we can allocate graphs from a ggml_context | ||||
|     GGML_API void ggml_graph_splits_free(struct ggml_graph_splits * splits); | ||||
|  | ||||
|     // add a split to the graph - single and multiple inputs versions | ||||
|     GGML_API void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...); | ||||
|     GGML_API void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, ...); | ||||
|  | ||||
|     // build graphs for all splits | ||||
|     GGML_API void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output); | ||||
|  | ||||
|     // compute | ||||
|     GGML_API void ggml_graph_splits_compute(struct ggml_graph_splits * splits); | ||||
|  | ||||
| #ifdef  __cplusplus | ||||
| } | ||||
| #endif | ||||
							
								
								
									
										468
									
								
								ggml-cuda-kern.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										468
									
								
								ggml-cuda-kern.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,468 @@ | ||||
| // kernels for ggml-cuda | ||||
| #include <cuda.h> | ||||
| #include <cuda_fp16.h> | ||||
|  | ||||
|  | ||||
| template<typename dst_t> | ||||
| using to_t_cuda_t = void (*)(const void * x, dst_t * y, int k, cudaStream_t stream); | ||||
|  | ||||
| // support for vector types in generic code | ||||
| template<typename T> struct vec2_t_impl; | ||||
| template<> struct vec2_t_impl<half>   { typedef half2 type; }; | ||||
| template<> struct vec2_t_impl<float>  { typedef float2 type; }; | ||||
|  | ||||
| template<typename T> using vec2_t = typename vec2_t_impl<T>::type; | ||||
|  | ||||
| template<typename T> inline __host__ __device__ vec2_t<T> make_vec2_t(const T & x, const T & y); | ||||
| template<> inline __host__ __device__ vec2_t<half>  make_vec2_t(const  half & x, const  half & y) { return __halves2half2(x, y); } | ||||
| template<> inline __host__ __device__ vec2_t<float> make_vec2_t(const float & x, const float & y) { return make_float2(x, y); } | ||||
|  | ||||
| // the cuda headers define operators for half2, but not for float2 | ||||
| // they are defined here to simplify generic code | ||||
| inline __host__ __device__ float2   operator+(const float2 & a, const float2 & b) { return make_float2(a.x + b.x, a.y + b.y); } | ||||
| inline __host__ __device__ float2   operator-(const float2 & a, const float2 & b) { return make_float2(a.x - b.x, a.y - b.y); } | ||||
| inline __host__ __device__ float2   operator*(const float2 & a, const float2 & b) { return make_float2(a.x * b.x, a.y * b.y); } | ||||
| inline __host__ __device__ float2   operator/(const float2 & a, const float2 & b) { return make_float2(a.x / b.x, a.y / b.y); } | ||||
| inline __host__ __device__ float2 & operator+=(     float2 & a, const float2 & b) { a.x += b.x; a.y += b.y; return a; } | ||||
| inline __host__ __device__ float2 & operator-=(     float2 & a, const float2 & b) { a.x -= b.x; a.y -= b.y; return a; } | ||||
| inline __host__ __device__ float2 & operator*=(     float2 & a, const float2 & b) { a.x *= b.x; a.y *= b.y; return a; } | ||||
| inline __host__ __device__ float2 & operator/=(     float2 & a, const float2 & b) { a.x /= b.x; a.y /= b.y; return a; } | ||||
|  | ||||
| template<typename dst_t> | ||||
| using dequantize_kernel_t = void (*)(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v); | ||||
|  | ||||
| __device__ half  sqrt(const half x) { return hsqrt(x); } | ||||
| __device__ half  exp(const half x) { return hexp(x); } | ||||
| __device__ half2 exp(const half2 x) { return h2exp(x); } | ||||
| __device__ half  cos(const half x) { return hcos(x); } | ||||
| __device__ half  sin(const half x) { return hsin(x); } | ||||
| __device__ half  max(const half x, const half y) { return __hmax(x, y); } | ||||
| __device__ half2 max(const half2 x, const half2 y) { return __hmax2(x, y); } | ||||
|  | ||||
|  | ||||
| template<typename T> struct op_max { __device__ T operator()(T a, T b) const { return max(a, b); } }; | ||||
| template<typename T> struct op_sum { __device__ T operator()(T a, T b) const { return a + b; } }; | ||||
|  | ||||
| template<template<typename> class op_t, typename T> | ||||
| static inline __device__ T warp_reduce_all(T val) { | ||||
|     op_t<T> op; | ||||
| #pragma unroll | ||||
|     for (int mask = warpSize/2; mask > 0; mask /= 2)  { | ||||
|         val = op(val, __shfl_xor_sync(0xffffffff, val, mask, 32)); | ||||
|     } | ||||
|     return val; | ||||
| } | ||||
|  | ||||
| template<typename T> | ||||
| static __device__ T zero_init() { return T(0); } | ||||
| template<> | ||||
| __device__ half2 zero_init() { return half2(0.0f, 0.0f); } | ||||
|  | ||||
| template<template<typename> class op_t, typename T> | ||||
| static __device__ T block_reduce_all(const T val, const T init = zero_init<T>()) { | ||||
|     const int warp_id = threadIdx.x / warpSize; // warp id within the block | ||||
|     const int lane_id = threadIdx.x % warpSize; // lane id within the warp | ||||
|     const int num_warps = blockDim.x / warpSize; // number of warps in the block | ||||
|  | ||||
|     __shared__ T lane_result[32]; // max 32 warps per block | ||||
|  | ||||
|     // reduce warps | ||||
|     T warp_reduction = warp_reduce_all<op_t>(val); | ||||
|  | ||||
|     __syncthreads(); | ||||
|  | ||||
|     // first thread within a warp writes reduction to shared memory | ||||
|     if (lane_id == 0) { | ||||
|         lane_result[warp_id] = warp_reduction; | ||||
|     } | ||||
|  | ||||
|     // wait for all warps to finish writing their reductions | ||||
|     __syncthreads(); | ||||
|  | ||||
|     // reduce the results of all warps | ||||
|     T block_reduction = init; | ||||
|     if (lane_id < num_warps) { | ||||
|         block_reduction = lane_result[lane_id]; | ||||
|     } | ||||
|  | ||||
|     block_reduction = warp_reduce_all<op_t>(block_reduction); | ||||
|  | ||||
|     return block_reduction; | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ void convert_fp16(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v) { | ||||
|     const half * x = (const half *) vx; | ||||
|  | ||||
|     v.x = (dst_t)(x[ib + iqs + 0]); | ||||
|     v.y = (dst_t)(x[ib + iqs + 1]); | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ void convert_fp32(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v) { | ||||
|     const float * x = (const float *) vx; | ||||
|  | ||||
|     v.x = (dst_t)(x[ib + iqs + 0]); | ||||
|     v.y = (dst_t)(x[ib + iqs + 1]); | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename src1_t, typename dst_t> | ||||
| static __global__ void k_mul_mat_p021(const src0_t * vx, const src1_t * y, dst_t * dst, const int ncols_x, const int nrows_x, const int nchannels_x) { | ||||
|     const src0_t * x = vx; | ||||
|     // const int col_x = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|     // const int row_x = blockDim.y*blockIdx.y + threadIdx.y; | ||||
|  | ||||
|     const int row_x = blockDim.y*blockIdx.y + threadIdx.y; | ||||
|     const int channel = blockDim.z*blockIdx.z + threadIdx.z; | ||||
|  | ||||
|     const int nrows_y = ncols_x; | ||||
|     const int nrows_dst = nrows_x; | ||||
|     const int row_dst = row_x; | ||||
|  | ||||
|     dst_t tmp = 0; | ||||
|  | ||||
|     for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { | ||||
|         const int col_x = col_x0 + threadIdx.x; | ||||
|  | ||||
|         if (col_x >= ncols_x) { | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         // x is transposed and permuted | ||||
|         const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x; | ||||
|         const dst_t xi = (dst_t)(x[ix]); | ||||
|  | ||||
|         const int row_y = col_x; | ||||
|  | ||||
|         // y is not transposed but permuted | ||||
|         const int iy = channel*nrows_y + row_y; | ||||
|  | ||||
|         tmp += xi * y[iy]; | ||||
|     } | ||||
|  | ||||
|     // dst is not transposed and not permuted | ||||
|     const int idst = channel*nrows_dst + row_dst; | ||||
|  | ||||
|     // sum up partial sums and write back result | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     if (threadIdx.x == 0) { | ||||
|         dst[idst] = tmp; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename src1_t, typename dst_t> | ||||
| static __global__ void k_mul_mat_vec_nc( | ||||
|     const src0_t * vx, const src1_t * y, dst_t * dst, const int ncols_x, const int nrows_x, | ||||
|     const int row_stride_x, const int nchannels_x, const int channel_stride_x) { | ||||
|  | ||||
|     const src0_t * x = vx; | ||||
|  | ||||
|     const int row_x = blockDim.y*blockIdx.y + threadIdx.y; | ||||
|     const int channel = blockDim.z*blockIdx.z + threadIdx.z; | ||||
|  | ||||
|     const int nrows_y = ncols_x; | ||||
|     const int nrows_dst = nrows_x; | ||||
|     const int row_dst = row_x; | ||||
|  | ||||
|     const int idst = channel*nrows_dst + row_dst; | ||||
|  | ||||
|     dst_t tmp = 0; | ||||
|  | ||||
|     for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { | ||||
|         const int col_x = col_x0 + threadIdx.x; | ||||
|  | ||||
|         if (col_x >= ncols_x) { | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x; | ||||
|         const dst_t xi = (dst_t)(x[ix]); | ||||
|  | ||||
|         const int row_y = col_x; | ||||
|  | ||||
|         const int iy = channel*nrows_y + row_y; | ||||
|  | ||||
|         tmp += xi * y[iy]; | ||||
|     } | ||||
|  | ||||
|     // sum up partial sums and write back result | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     if (threadIdx.x == 0) { | ||||
|         dst[idst] = tmp; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template <typename src_t, typename dst_t> | ||||
| static __global__ void k_cpy(const char * cx, char * cdst, const int ne, | ||||
|                                    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02, | ||||
|                                    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) { | ||||
|     const int i = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|  | ||||
|     if (i >= ne) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int i02 = i / (ne00*ne01); | ||||
|     const int i01 = (i - i02*ne01*ne00) / ne00; | ||||
|     const int i00 = i - i02*ne01*ne00 - i01*ne00; | ||||
|     const int x_offset = i00*nb00 + i01*nb01 + i02*nb02; | ||||
|  | ||||
|     const int i12 = i / (ne10*ne11); | ||||
|     const int i11 = (i - i12*ne10*ne11) / ne10; | ||||
|     const int i10 = i - i12*ne10*ne11 - i11*ne10; | ||||
|     const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12; | ||||
|  | ||||
|     *(dst_t *)(cdst + dst_offset) = *(const src_t *)(cx + x_offset); | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename src1_t, typename dst_t> | ||||
| static __global__ void k_add(const src0_t * x, const src1_t * y, dst_t * dst, const int k) { | ||||
|     const int i = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|  | ||||
|     if (i >= k) { | ||||
|         return; | ||||
|     } | ||||
|     dst[i] = (dst_t)x[i] + (dst_t)y[i]; | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename src1_t, typename dst_t> | ||||
| static __global__ void k_mul(const src0_t * x, const src1_t * y, dst_t * dst, const int kx, const int ky) { | ||||
|     const int i = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|  | ||||
|     if (i >= kx) { | ||||
|         return; | ||||
|     } | ||||
|     dst[i] = (dst_t)x[i] * (dst_t)y[i%ky]; | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename dst_t> | ||||
| static __global__ void k_silu(const src0_t * x, dst_t * dst, const int k) { | ||||
|     const int i = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|  | ||||
|     if (i >= k) { | ||||
|         return; | ||||
|     } | ||||
|     dst[i] = x[i] / (src0_t(1) + exp(-x[i])); | ||||
| } | ||||
|  | ||||
| // TODO: unstable with f16 compute, using f32 compute for now | ||||
| template<typename src0_t, typename dst_t> | ||||
| static __global__ void k_rms_norm(const src0_t * x, dst_t * dst, const int ncols) { | ||||
|     const int row = blockIdx.x*blockDim.y + threadIdx.y; | ||||
|     const int tid = threadIdx.x; | ||||
|  | ||||
|     const float eps  = 1e-6; | ||||
|  | ||||
|     float tmp = 0; // partial sum for thread in warp | ||||
|  | ||||
|     for (int col = tid; col < ncols; col += WARP_SIZE) { | ||||
|         const float xi = x[row*ncols + col]; | ||||
|         tmp += xi * xi; | ||||
|     } | ||||
|  | ||||
|     // sum up partial sums | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     const float mean = tmp / (float)ncols; | ||||
|     const float scale = 1.0f / sqrtf(mean + eps); | ||||
|  | ||||
|     for (int col = tid; col < ncols; col += WARP_SIZE) { | ||||
|         dst[row*ncols + col] = scale * (float)x[row*ncols + col]; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename dst_t> | ||||
| static __global__ void k_rope(const src0_t * x, dst_t * dst, const int ncols, const float p, const float theta_scale) { | ||||
|     const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x); | ||||
|  | ||||
|     if (col >= ncols) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int row = blockDim.y*blockIdx.y + threadIdx.y; | ||||
|     const int i = row*ncols + col; | ||||
|  | ||||
|     const dst_t theta = p * powf(theta_scale, col/2); | ||||
|     const dst_t sin_theta = sin(theta); | ||||
|     const dst_t cos_theta = cos(theta); | ||||
|  | ||||
|     const dst_t x0 = x[i + 0]; | ||||
|     const dst_t x1 = x[i + 1]; | ||||
|  | ||||
|     dst[i + 0] = (dst_t)x0*cos_theta - (dst_t)x1*sin_theta; | ||||
|     dst[i + 1] = (dst_t)x0*sin_theta + (dst_t)x1*cos_theta; | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename dst_t> | ||||
| static __global__ void k_diag_mask_inf(const src0_t * x, dst_t * dst, const int ncols, const int rows_per_channel, const int n_past) { | ||||
|     const int col = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|     const int row = blockDim.y*blockIdx.y + threadIdx.y; | ||||
|  | ||||
|     if (col >= ncols) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int i = row*ncols + col; | ||||
|     //dst[i] = col > (n_past + row % rows_per_channel) ? (dst_t)-INFINITY : (dst_t)x[i]; | ||||
|     dst[i] = (dst_t)x[i] - (dst_t)((col > n_past + row % rows_per_channel) * INT_MAX); // equivalent within rounding error but slightly faster on GPU | ||||
| } | ||||
|  | ||||
| // TODO: numerically stable version - low prio since the softmax is computed in the fused attention kernel | ||||
| // check: https://arxiv.org/pdf/2001.04438.pdf | ||||
| template<typename src0_t, typename dst_t> | ||||
| static __global__ void k_soft_max_orig(const src0_t * x, dst_t * dst, const int ncols) { | ||||
|     const int row = blockDim.y*blockIdx.y + threadIdx.y; | ||||
|     const int block_size = blockDim.x; | ||||
|     const int tid = threadIdx.x; | ||||
|  | ||||
|     float tmp = 0; | ||||
|  | ||||
|     for (int block_start = 0; block_start < ncols; block_start += block_size) { | ||||
|         const int col = block_start + tid; | ||||
|  | ||||
|         if (col >= ncols) { | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         const int i = row*ncols + col; | ||||
|         const float val = expf(x[i]); | ||||
|         tmp += val; | ||||
|         dst[i] = val; | ||||
|     } | ||||
|  | ||||
|     // sum up partial sums | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     for (int block_start = 0; block_start < ncols; block_start += block_size) { | ||||
|         const int col = block_start + tid; | ||||
|  | ||||
|         if (col >= ncols) { | ||||
|             break; | ||||
|         } | ||||
|  | ||||
|         const int i = row*ncols + col; | ||||
|         dst[i] /= tmp; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template<typename src_t, typename dst_t, int pack_size, int block_size> | ||||
| static __global__ void k_soft_max(const src_t * x, dst_t * dst, const int64_t nrows, const int64_t ncols) { | ||||
|     //assert(ncols % pack_size == 0); | ||||
|     const int tid = threadIdx.x; | ||||
|     const int num_packs = ncols / pack_size; | ||||
|  | ||||
|     for (int row = blockIdx.x; row < nrows; row += gridDim.x) { | ||||
|         src_t th_max = -INFINITY; | ||||
|         // row max thread | ||||
|         #pragma unroll | ||||
|         for (int pack_id = tid; pack_id < num_packs; pack_id += block_size) { | ||||
|             // load pack | ||||
|             src_t pack[pack_size]; | ||||
|             #pragma unroll | ||||
|             for (int i = 0; i < pack_size; i++) { | ||||
|                 pack[i] = x[row * ncols + pack_id * pack_size + i]; | ||||
|             } | ||||
|             // reduce max pack | ||||
|             #pragma unroll | ||||
|             for (int i = 0; i < pack_size; ++i) { | ||||
|                 th_max = max(th_max, pack[i]); | ||||
|             } | ||||
|         } | ||||
|         // reduce max row warp threads | ||||
|         src_t row_max = block_reduce_all<op_max>(th_max, (src_t)-INFINITY); | ||||
|  | ||||
|         // row exp sum thread | ||||
|         src_t th_sum = 0; | ||||
|         #pragma unroll | ||||
|         for (int pack_id = tid; pack_id < num_packs; pack_id += block_size) { | ||||
|             // load pack | ||||
|             src_t pack[pack_size]; | ||||
|             #pragma unroll | ||||
|             for (int i = 0; i < pack_size; i++) { | ||||
|                 pack[i] = x[row * ncols + pack_id * pack_size + i]; | ||||
|             } | ||||
|             // reduce pack | ||||
|             #pragma unroll | ||||
|             for (int i = 0; i < pack_size; ++i) { | ||||
|                 th_sum += exp(pack[i] - row_max); | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         // reduce row exp sum all threads | ||||
|         src_t row_sum = block_reduce_all<op_sum>(th_sum); | ||||
|  | ||||
|         // store (row - row_max) / row exp sum | ||||
|         #pragma unroll | ||||
|         for (int pack_id = tid; pack_id < num_packs; pack_id += block_size) { | ||||
|             // load pack | ||||
|             src_t pack[pack_size]; | ||||
|             #pragma unroll | ||||
|             for (int i = 0; i < pack_size; i++) { | ||||
|                 pack[i] = x[row * ncols + pack_id * pack_size + i]; | ||||
|             } | ||||
|             // reduce pack | ||||
|             #pragma unroll | ||||
|             for (int i = 0; i < pack_size; ++i) { | ||||
|                 pack[i] = exp(pack[i] - row_max) / row_sum; | ||||
|             } | ||||
|  | ||||
|             // store pack | ||||
|             #pragma unroll | ||||
|             for (int i = 0; i < pack_size; i++) { | ||||
|                 dst[row * ncols + pack_id * pack_size + i] = pack[i]; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| template<typename src0_t, typename src1_t, typename dst_t> | ||||
| static __global__ void k_scale(const src0_t * x, dst_t * dst, const src1_t * scale, const int k) { | ||||
|     const int i = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|  | ||||
|     if (i >= k) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     dst[i] = (dst_t)(*scale) * (dst_t)x[i]; | ||||
| } | ||||
|  | ||||
| template<typename dst_t, int qk, int qr, dequantize_kernel_t<dst_t> dequantize_kernel> | ||||
| static __global__ void k_get_rows(const void * x, const int * y, dst_t * dst, const int ncols) { | ||||
|     const int col = (blockIdx.x*blockDim.x + threadIdx.x)*2; | ||||
|     const int row = blockDim.y*blockIdx.y + threadIdx.y; | ||||
|  | ||||
|     if (col >= ncols) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int r = y[row]; | ||||
|  | ||||
|     // copy x[r*ncols + col] to dst[row*ncols + col] | ||||
|     const int xi = r*ncols + col; | ||||
|     const int di = row*ncols + col; | ||||
|  | ||||
|     const int ib = xi/qk; // block index | ||||
|     const int iqs = (xi%qk)/qr; // quant index | ||||
|     const int iybs = di - di%qk; // y block start index | ||||
|     const int y_offset = qr == 1 ? 1 : qk/2; | ||||
|  | ||||
|     // dequantize | ||||
|     vec2_t<dst_t> v; | ||||
|     dequantize_kernel(x, ib, iqs, v); | ||||
|     dst[iybs + iqs + 0]        = v.x; | ||||
|     dst[iybs + iqs + y_offset] = v.y; | ||||
| } | ||||
							
								
								
									
										920
									
								
								ggml-cuda-quant.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										920
									
								
								ggml-cuda-quant.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,920 @@ | ||||
| // quants kernels for ggml-cuda | ||||
|  | ||||
| // QK = number of values after dequantization | ||||
| // QR = QK / number of values before dequantization | ||||
| // QI = number of 32 bit integers before dequantization | ||||
|  | ||||
| #define QK4_0 32 | ||||
| #define QR4_0 2 | ||||
| #define QI4_0 4 | ||||
| typedef struct { | ||||
|     half    d;              // delta | ||||
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants | ||||
| } block_q4_0; | ||||
| static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding"); | ||||
|  | ||||
| #define QK4_1 32 | ||||
| #define QR4_1 2 | ||||
| #define QI4_1 4 | ||||
| typedef struct { | ||||
|     half    d;              // delta | ||||
|     half    m;              // min | ||||
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants | ||||
| } block_q4_1; | ||||
| static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); | ||||
|  | ||||
| #define QK5_0 32 | ||||
| #define QR5_0 2 | ||||
| #define QI5_0 4 | ||||
| typedef struct { | ||||
|     half d;                 // delta | ||||
|     uint8_t qh[4];          // 5-th bit of quants | ||||
|     uint8_t qs[QK5_0 / 2];  // nibbles / quants | ||||
| } block_q5_0; | ||||
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); | ||||
|  | ||||
| #define QK5_1 32 | ||||
| #define QR5_1 2 | ||||
| #define QI5_1 4 | ||||
| typedef struct { | ||||
|     half d;                 // delta | ||||
|     half m;                 // min | ||||
|     uint8_t qh[4];          // 5-th bit of quants | ||||
|     uint8_t qs[QK5_1 / 2];  // nibbles / quants | ||||
| } block_q5_1; | ||||
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); | ||||
|  | ||||
| #define QK8_0 32 | ||||
| #define QR8_0 1 | ||||
| #define QI8_0 8 | ||||
| typedef struct { | ||||
|     half    d;              // delta | ||||
|     int8_t  qs[QK8_0];      // quants | ||||
| } block_q8_0; | ||||
| static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); | ||||
|  | ||||
| #define QK8_1 32 | ||||
| #define QR8_1 1 | ||||
| #define QI8_1 8 | ||||
| typedef struct { | ||||
|     half    d;              // delta | ||||
|     half    s;              // unquantized sum | ||||
|     int8_t  qs[QK8_0];      // quants | ||||
| } block_q8_1; | ||||
| static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding"); | ||||
|  | ||||
| //================================= k-quants | ||||
|  | ||||
| #define QK_K 256 | ||||
|  | ||||
| typedef struct { | ||||
|     uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits | ||||
|     uint8_t qs[QK_K/4];      // quants | ||||
|     half d;                  // super-block scale for quantized scales | ||||
|     half dmin;               // super-block scale for quantized mins | ||||
| } block_q2_K; | ||||
| static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding"); | ||||
|  | ||||
| typedef struct { | ||||
|     uint8_t hmask[QK_K/8]; | ||||
|     uint8_t qs[QK_K/4]; // nibbles / quants | ||||
|     uint8_t scales[3*QK_K/64]; | ||||
|     half d; | ||||
| } block_q3_K; | ||||
| static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding"); | ||||
|  | ||||
| typedef struct { | ||||
|     half d;                    // super-block scale for quantized scales | ||||
|     half dmin;                 // super-block scale for quantized mins | ||||
|     uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits | ||||
|     uint8_t qs[QK_K/2];        // 4--bit quants | ||||
| } block_q4_K; | ||||
| static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding"); | ||||
|  | ||||
| typedef struct { | ||||
|     half    d;                   // super-block scale for quantized scales | ||||
|     half    dmin;                // super-block scale for quantized mins | ||||
|     uint8_t scales[3*QK_K/64];   // scales, quantized with 6 bits | ||||
|     uint8_t qh[QK_K/8];          // quants, high bit | ||||
|     uint8_t qs[QK_K/2];          // quants, low 4 bits | ||||
| } block_q5_K; | ||||
| static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); | ||||
|  | ||||
| typedef struct { | ||||
|     uint8_t ql[QK_K/2];   // quants, lower 4 bits | ||||
|     uint8_t qh[QK_K/4];   // quants, upper 2 bits | ||||
|     int8_t  scales[QK_K/16]; // scales | ||||
|     half    d;         // delta | ||||
| } block_q6_K; | ||||
| static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding"); | ||||
|  | ||||
|  | ||||
| template<typename src1_t, typename dst_t> | ||||
| using dot_kernel_k_t = void (*)(const void * vx, const int ib, const int iqs, const src1_t * y, dst_t & v); | ||||
|  | ||||
| template<typename dst_t> | ||||
| using vec_dot_q_cuda_t = dst_t (*)(const void * vbq, const block_q8_1 * bq8_1, const int iqs); | ||||
|  | ||||
|  | ||||
| // TODO: f16 | ||||
| template<typename src_t> | ||||
| static __global__ void quantize_q8_1(const src_t * x, void * vy, const int k) { | ||||
|     const int i = blockDim.x*blockIdx.x + threadIdx.x; | ||||
|  | ||||
|     if (i >= k) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     block_q8_1 * y = (block_q8_1 *) vy; | ||||
|  | ||||
|     const int ib = i / QK8_0; // block index | ||||
|     const int iqs = i % QK8_0; // quant index | ||||
|  | ||||
|     const float xi = x[i]; | ||||
|     float amax = fabsf(xi); | ||||
|     float sum = xi; | ||||
|  | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32)); | ||||
|         sum += __shfl_xor_sync(0xffffffff, sum, mask, 32); | ||||
|     } | ||||
|  | ||||
|     const float d = amax / 127; | ||||
|     const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); | ||||
|  | ||||
|     y[ib].qs[iqs] = q; | ||||
|  | ||||
|     if (iqs > 0) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     y[ib].d = d; | ||||
|     y[ib].s = sum; | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v){ | ||||
|     const block_q4_0 * x = (const block_q4_0 *) vx; | ||||
|  | ||||
|     const dst_t d = x[ib].d; | ||||
|  | ||||
|     const uint8_t vui = x[ib].qs[iqs]; | ||||
|  | ||||
|     v.x = vui & 0xF; | ||||
|     v.y = vui >> 4; | ||||
|  | ||||
|     const vec2_t<dst_t> off2 = make_vec2_t<dst_t>(8, 8); | ||||
|     const vec2_t<dst_t> d2   = make_vec2_t<dst_t>(d, d); | ||||
|  | ||||
|     v = (v - off2) * d2; | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v){ | ||||
|     const block_q4_1 * x = (const block_q4_1 *) vx; | ||||
|  | ||||
|     const dst_t d = x[ib].d; | ||||
|     const dst_t m = x[ib].m; | ||||
|  | ||||
|     const uint8_t vui = x[ib].qs[iqs]; | ||||
|  | ||||
|     v.x = vui & 0xF; | ||||
|     v.y = vui >> 4; | ||||
|  | ||||
|     const vec2_t<dst_t> d2 = make_vec2_t<dst_t>(d, d); | ||||
|     const vec2_t<dst_t> m2 = make_vec2_t<dst_t>(m, m); | ||||
|  | ||||
|     v = v * d2 + m2; | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v){ | ||||
|     const block_q5_0 * x = (const block_q5_0 *) vx; | ||||
|  | ||||
|     const dst_t d = x[ib].d; | ||||
|  | ||||
|     uint32_t qh; | ||||
|     memcpy(&qh, x[ib].qh, sizeof(qh)); | ||||
|  | ||||
|     const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10; | ||||
|     const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10; | ||||
|  | ||||
|     v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); | ||||
|     v.y = ((x[ib].qs[iqs] >>  4) | xh_1); | ||||
|  | ||||
|     const vec2_t<dst_t> off2 = make_vec2_t<dst_t>(16, 16); | ||||
|     const vec2_t<dst_t> d2   = make_vec2_t<dst_t>(d, d); | ||||
|  | ||||
|     v = (v - off2) * d2; | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v){ | ||||
|     const block_q5_1 * x = (const block_q5_1 *) vx; | ||||
|  | ||||
|     const dst_t d = x[ib].d; | ||||
|     const dst_t m = x[ib].m; | ||||
|  | ||||
|     uint32_t qh; | ||||
|     memcpy(&qh, x[ib].qh, sizeof(qh)); | ||||
|  | ||||
|     const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10; | ||||
|     const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10; | ||||
|  | ||||
|     v.x = ((x[ib].qs[iqs] & 0xf) | xh_0); | ||||
|     v.y = ((x[ib].qs[iqs] >>  4) | xh_1); | ||||
|  | ||||
|     const vec2_t<dst_t> d2 = make_vec2_t<dst_t>(d, d); | ||||
|     const vec2_t<dst_t> m2 = make_vec2_t<dst_t>(m, m); | ||||
|  | ||||
|     v = v * d2 + m2; | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, vec2_t<dst_t> & v){ | ||||
|     const block_q8_0 * x = (const block_q8_0 *) vx; | ||||
|  | ||||
|     const dst_t d = x[ib].d; | ||||
|  | ||||
|     v.x = x[ib].qs[iqs + 0]; | ||||
|     v.y = x[ib].qs[iqs + 1]; | ||||
|  | ||||
|     const vec2_t<dst_t> d2 = make_vec2_t<dst_t>(d, d); | ||||
|  | ||||
|     v = v * d2; | ||||
| } | ||||
|  | ||||
| //================================== k-quants | ||||
|  | ||||
| static __global__ void dequantize_block_q2_K(const void * vx, float * yy) { | ||||
|  | ||||
|     const int i   = blockIdx.x; | ||||
|     const int tid = threadIdx.x; | ||||
|     const int n   = tid/32; | ||||
|     const int l   = tid - 32*n; | ||||
|     const int is  = 8*n + l/16; | ||||
|  | ||||
|     const block_q2_K * x = (const block_q2_K *) vx; | ||||
|  | ||||
|     const uint8_t q = x[i].qs[32*n + l]; | ||||
|     float * y = yy + i*QK_K + 128*n; | ||||
|  | ||||
|     float dall = x[i].d; | ||||
|     float dmin = x[i].dmin; | ||||
|     y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); | ||||
|     y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); | ||||
|     y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); | ||||
|     y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); | ||||
|  | ||||
| } | ||||
|  | ||||
| static __device__ void vec_dot_q2_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { | ||||
|  | ||||
|     const block_q2_K * x = (const block_q2_K *) vx; | ||||
|  | ||||
|     // if n is 0, we want to do the lower 128, else the upper 128, | ||||
|     // covering y[l+0],  y[l+32], y[l+64], y[l+96] and | ||||
|     //          y[l+16], y[l+48], y[l+80], y[l+112] | ||||
|     int n = iqs/128;                // 0 or 1 | ||||
|     int r = iqs - 128*n;            // 0...120 in steps of 8 | ||||
|     int l = r/8;                    // 0...15 in steps of 1 | ||||
|  | ||||
|     const float   * y = yy + 128*n + l; | ||||
|     const uint8_t * q = x[ib].qs + 32*n + l; | ||||
|     const uint8_t * s = x[ib].scales + 8*n; | ||||
|  | ||||
|     const float dall = x[ib].d; | ||||
|     const float dmin = x[ib].dmin; | ||||
|  | ||||
|     float sum = y[  0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4)) | ||||
|               + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4)) | ||||
|               + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4)) | ||||
|               + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4)) | ||||
|               + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4)) | ||||
|               + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4)) | ||||
|               + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4)) | ||||
|               + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4)); | ||||
|  | ||||
|     result = sum; | ||||
|  | ||||
| } | ||||
|  | ||||
| static __global__ void dequantize_block_q3_K(const void * vx, float * yy) { | ||||
|  | ||||
|     int r = threadIdx.x/4; | ||||
|     int i = blockIdx.x; | ||||
|     int tid = r/2; | ||||
|     int is0 = r%2; | ||||
|     int l0 = 16*is0 + 4*(threadIdx.x%4); | ||||
|     int n = tid / 4; | ||||
|     int j = tid - 4*n; | ||||
|  | ||||
|     const block_q3_K * x = (const block_q3_K *) vx; | ||||
|  | ||||
|     uint8_t m = 1 << (4*n + j); | ||||
|     int is = 8*n + 2*j + is0; | ||||
|     int shift = 2*j; | ||||
|  | ||||
|     int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) : | ||||
|                 is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) : | ||||
|                 is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) : | ||||
|                           (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4); | ||||
|     float d_all = x[i].d; | ||||
|     float dl = d_all * (us - 32); | ||||
|  | ||||
|     float * y = yy + i*QK_K + 128*n + 32*j; | ||||
|     const uint8_t * q = x[i].qs + 32*n; | ||||
|     const uint8_t * hm = x[i].hmask; | ||||
|  | ||||
|     for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); | ||||
|  | ||||
| } | ||||
|  | ||||
| static __device__ void vec_dot_q3_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { | ||||
|  | ||||
|     const block_q3_K * x = (const block_q3_K *) vx; | ||||
|  | ||||
|     const uint32_t kmask1 = 0x03030303; | ||||
|     const uint32_t kmask2 = 0x0f0f0f0f; | ||||
|  | ||||
|     uint32_t aux[3]; | ||||
|     uint32_t utmp[4]; | ||||
|  | ||||
|     // if n is 0, we want to do the lower 128, else the upper 128, | ||||
|     // covering y[l+0],  y[l+32], y[l+64], y[l+96] and | ||||
|     //          y[l+16], y[l+48], y[l+80], y[l+112] | ||||
|     int n = iqs/128;                // 0 or 1 | ||||
|     int r = iqs - 128*n;            // 0...120 in steps of 8 | ||||
|     int l = r/8;                    // 0...15 in steps of 1 | ||||
|  | ||||
|     const float   * y = yy + 128*n + l; | ||||
|     const uint8_t * q = x[ib].qs + 32*n + l; | ||||
|     const uint8_t * hm = x[ib].hmask + l; | ||||
|     const int8_t  * s = (const int8_t *)utmp + 8*n; | ||||
|  | ||||
|     memcpy(aux, x[ib].scales, 12); | ||||
|     utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); | ||||
|     utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); | ||||
|     utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); | ||||
|     utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); | ||||
|  | ||||
|     const float dall = x[ib].d; | ||||
|  | ||||
|     const uint8_t m = 1 << (4*n); | ||||
|  | ||||
|     float sum = y[  0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4)) | ||||
|               + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4)) | ||||
|               + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4)) | ||||
|               + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4)) | ||||
|               + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4)) | ||||
|               + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4)) | ||||
|               + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4)) | ||||
|               + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4)); | ||||
|  | ||||
|     result = sum * dall; | ||||
|  | ||||
| } | ||||
|  | ||||
| static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { | ||||
|     if (j < 4) { | ||||
|         d = q[j] & 63; m = q[j + 4] & 63; | ||||
|     } else { | ||||
|         d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); | ||||
|         m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4); | ||||
|     } | ||||
| } | ||||
|  | ||||
| static __global__ void dequantize_block_q4_K(const void * vx, float * yy) { | ||||
|     const block_q4_K * x = (const block_q4_K *) vx; | ||||
|  | ||||
|     const int i = blockIdx.x; | ||||
|  | ||||
|     //// assume 64 threads - this is very slightly better than the one below | ||||
|     //const int tid = threadIdx.x; | ||||
|     //const int il  = tid/16; | ||||
|     //const int ir  = tid%16; | ||||
|     //const int is  = 2*il; | ||||
|     //const int n   = 2; | ||||
|  | ||||
|     // assume 32 threads | ||||
|     const int tid = threadIdx.x; | ||||
|     const int il  = tid/8; | ||||
|     const int ir  = tid%8; | ||||
|     const int is  = 2*il; | ||||
|     const int n   = 4; | ||||
|  | ||||
|     float * y = yy + i*QK_K + 64*il + n*ir; | ||||
|  | ||||
|     const float dall = x[i].d; | ||||
|     const float dmin = x[i].dmin; | ||||
|  | ||||
|     const uint8_t * q = x[i].qs + 32*il + n*ir; | ||||
|  | ||||
|     uint8_t sc, m; | ||||
|     get_scale_min_k4(is + 0, x[i].scales, sc, m); | ||||
|     const float d1 = dall * sc; const float m1 = dmin * m; | ||||
|     get_scale_min_k4(is + 1, x[i].scales, sc, m); | ||||
|     const float d2 = dall * sc; const float m2 = dmin * m; | ||||
|     for (int l = 0; l < n; ++l) { | ||||
|         y[l + 0] = d1 * (q[l] & 0xF) - m1; | ||||
|         y[l +32] = d2 * (q[l] >>  4) - m2; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static __device__ void vec_dot_q4_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { | ||||
|  | ||||
|     const block_q4_K * x = (const block_q4_K *) vx; | ||||
|  | ||||
|                                     // iqs is in 0...248 in steps of 8 => | ||||
|     const int j  = iqs / 64;        // j  is in 0...3 | ||||
|     const int ir = (iqs - 64*j)/2;  // ir is in 0...28 in steps of 4 | ||||
|     const int is = 2*j;             // is is in 0...6 in steps of 2 | ||||
|  | ||||
|     const float   * y = yy + 64*j + ir; | ||||
|     const uint8_t * q = x[ib].qs + 32*j + ir; | ||||
|  | ||||
|     const float dall = x[ib].d; | ||||
|     const float dmin = x[ib].dmin; | ||||
|  | ||||
|     uint8_t sc, m; | ||||
|     get_scale_min_k4(is + 0, x[ib].scales, sc, m); | ||||
|     const float d1 = dall * sc; | ||||
|     const float m1 = dmin * m; | ||||
|     get_scale_min_k4(is + 1, x[ib].scales, sc, m); | ||||
|     const float d2 = dall * sc; | ||||
|     const float m2 = dmin * m; | ||||
|  | ||||
|     float sum = 0; | ||||
|     for (int k = 0; k < 4; ++k) { | ||||
|         sum += y[k +  0] * (d1 * (q[k] & 0xF) - m1); | ||||
|         sum += y[k + 32] * (d2 * (q[k] >>  4) - m2); | ||||
|     } | ||||
|     result = sum; | ||||
|  | ||||
| } | ||||
|  | ||||
| static __global__ void dequantize_block_q5_K(const void * vx, float * yy) { | ||||
|     const block_q5_K * x = (const block_q5_K *) vx; | ||||
|  | ||||
|     const int i = blockIdx.x; | ||||
|  | ||||
|     // assume 64 threads - this is very slightly better than the one below | ||||
|     const int tid = threadIdx.x; | ||||
|     const int il  = tid/16;   // il is in 0...3 | ||||
|     const int ir  = tid%16;   // ir is in 0...15 | ||||
|     const int is  = 2*il;     // is is in 0...6 | ||||
|  | ||||
|     float * y = yy + i*QK_K + 64*il + 2*ir; | ||||
|  | ||||
|     const float dall = x[i].d; | ||||
|     const float dmin = x[i].dmin; | ||||
|  | ||||
|     const uint8_t * ql = x[i].qs + 32*il + 2*ir; | ||||
|     const uint8_t * qh = x[i].qh + 2*ir; | ||||
|  | ||||
|     uint8_t sc, m; | ||||
|     get_scale_min_k4(is + 0, x[i].scales, sc, m); | ||||
|     const float d1 = dall * sc; const float m1 = dmin * m; | ||||
|     get_scale_min_k4(is + 1, x[i].scales, sc, m); | ||||
|     const float d2 = dall * sc; const float m2 = dmin * m; | ||||
|  | ||||
|     uint8_t   hm  = 1 << (2*il); | ||||
|     y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1; | ||||
|     y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1; | ||||
|     hm <<= 1; | ||||
|     y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2; | ||||
|     y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2; | ||||
| } | ||||
|  | ||||
| static __device__ void vec_dot_q5_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) { | ||||
|  | ||||
|     const block_q5_K * x = (const block_q5_K *) vx; | ||||
|  | ||||
|                                     // iqs is in 0...248 in steps of 8 => | ||||
|     const int j  = iqs / 64;        // j  is in 0...3 | ||||
|     const int ir = (iqs - 64*j)/2;  // ir is in 0...28 in steps of 4 | ||||
|     const int is = 2*j;             // is is in 0...6 in steps of 2 | ||||
|  | ||||
|     const float   * y  = yy + 64*j + ir; | ||||
|     const uint8_t * ql = x[ib].qs + 32*j + ir; | ||||
|     const uint8_t * qh = x[ib].qh + ir; | ||||
|  | ||||
|     const float dall = x[ib].d; | ||||
|     const float dmin = x[ib].dmin; | ||||
|  | ||||
|     uint8_t sc, m; | ||||
|     get_scale_min_k4(is + 0, x[ib].scales, sc, m); | ||||
|     const float d1 = dall * sc; | ||||
|     const float m1 = dmin * m; | ||||
|     get_scale_min_k4(is + 1, x[ib].scales, sc, m); | ||||
|     const float d2 = dall * sc; | ||||
|     const float m2 = dmin * m; | ||||
|  | ||||
|     uint8_t   hm  = 1 << is; | ||||
|     float sum = 0; | ||||
|     for (int k = 0; k < 4; ++k) { | ||||
|         sum += y[k +  0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1); | ||||
|     } | ||||
|     hm <<= 1; | ||||
|     for (int k = 0; k < 4; ++k) { | ||||
|         sum += y[k + 32] * (d2 * ((ql[k] >>  4) + (qh[k] & hm ? 16 : 0)) - m2); | ||||
|     } | ||||
|     result = sum; | ||||
|  | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __global__ void dequantize_block_q6_K(const void * vx, dst_t * yy) { | ||||
|     const block_q6_K * x = (const block_q6_K *) vx; | ||||
|  | ||||
|     const int i = blockIdx.x; | ||||
|  | ||||
|     // assume 64 threads - this is very slightly better than the one below | ||||
|     const int tid = threadIdx.x; | ||||
|     const int ip  = tid/32;   // ip is 0 or 1 | ||||
|     const int il  = tid - 32*ip; // 0...32 | ||||
|     const int is  = 8*ip + il/16; | ||||
|  | ||||
|     // TODO: fp16 compute | ||||
|     dst_t * y = yy + i*QK_K + 128*ip + il; | ||||
|  | ||||
|     const float d = x[i].d; | ||||
|  | ||||
|     const uint8_t * ql = x[i].ql + 64*ip + il; | ||||
|     const uint8_t   qh = x[i].qh[32*ip + il]; | ||||
|     const int8_t  * sc = x[i].scales + is; | ||||
|  | ||||
|     y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); | ||||
|     y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); | ||||
|     y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32); | ||||
|     y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32); | ||||
| } | ||||
|  | ||||
| template<typename src1_t, typename dst_t> | ||||
| static __global__ void dequantize_mul_mat_vec_q6_k(const void * vx, const src1_t * yy, dst_t * dst, const int ncols, int nrows) { | ||||
|     static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); | ||||
|  | ||||
|     const int row = blockIdx.y*blockDim.y + threadIdx.y; | ||||
|     if (row > nrows) return; | ||||
|  | ||||
|     const int num_blocks_per_row = ncols / QK_K; | ||||
|     const int ib0 = row*num_blocks_per_row; | ||||
|  | ||||
|     const block_q6_K * x = (const block_q6_K *)vx + ib0; | ||||
|  | ||||
|     const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16 | ||||
|     const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1 | ||||
|  | ||||
|     const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8 | ||||
|  | ||||
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128... | ||||
|     const int in = tid - step*im;                        // 0...15 or 0...7 | ||||
|  | ||||
| #if K_QUANTS_PER_ITERATION == 1 | ||||
|     const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 | ||||
|     const int is = 0; | ||||
| #else | ||||
|     const int l0 = 4 * in;                               // 0, 4, 8, ..., 28 | ||||
|     const int is = in / 4; | ||||
| #endif | ||||
|     const int ql_offset = 64*im + l0; | ||||
|     const int qh_offset = 32*im + l0; | ||||
|     const int s_offset  =  8*im + is; | ||||
|     const int y_offset = 128*im + l0; | ||||
|  | ||||
|     dst_t tmp = 0; // partial sum for thread in warp | ||||
|  | ||||
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { | ||||
|  | ||||
|         const src1_t  * y  = yy + i * QK_K + y_offset; | ||||
|         const uint8_t * ql = x[i].ql + ql_offset; | ||||
|         const uint8_t * qh = x[i].qh + qh_offset; | ||||
|         const int8_t  * s  = x[i].scales + s_offset; | ||||
|  | ||||
|         const dst_t d = x[i].d; | ||||
|  | ||||
| #if K_QUANTS_PER_ITERATION == 1 | ||||
|         float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32) | ||||
|                   + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32) | ||||
|                   + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32) | ||||
|                   + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32) | ||||
|                   + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32) | ||||
|                   + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32) | ||||
|                   + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32) | ||||
|                   +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32); | ||||
|         tmp += sum; | ||||
| #else | ||||
|         dst_t sum = 0; | ||||
|         for (int l = 0; l < 4; ++l) { | ||||
|             sum += (dst_t)y[l+ 0] * (dst_t)s[0] * d * (dst_t)((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32) | ||||
|                  + (dst_t)y[l+32] * (dst_t)s[2] * d * (dst_t)((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32) | ||||
|                  + (dst_t)y[l+64] * (dst_t)s[4] * d * (dst_t)((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32) | ||||
|                  + (dst_t)y[l+96] * (dst_t)s[6] * d * (dst_t)((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32); | ||||
|         } | ||||
|         tmp += sum; | ||||
| #endif | ||||
|  | ||||
|     } | ||||
|  | ||||
|     // sum up partial sums and write back result | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     if (tid == 0) { | ||||
|         dst[row] = tmp; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template <typename dst_t, int qk, int qr, dequantize_kernel_t<dst_t> dequantize_kernel> | ||||
| static __global__ void dequantize_block(const void * vx, dst_t * y, const int k) { | ||||
|     const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; | ||||
|  | ||||
|     if (i >= k) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int ib = i/qk; // block index | ||||
|     const int iqs = (i%qk)/qr; // quant index | ||||
|     const int iybs = i - i%qk; // y block start index | ||||
|     const int y_offset = qr == 1 ? 1 : qk/2; | ||||
|  | ||||
|     // dequantize | ||||
|     vec2_t<dst_t> v; | ||||
|     dequantize_kernel(vx, ib, iqs, v); | ||||
|  | ||||
|     y[iybs + iqs + 0]        = v.x; | ||||
|     y[iybs + iqs + y_offset] = v.y; | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ __forceinline__ dst_t vec_dot_q4_0_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { | ||||
| #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics | ||||
|     const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq; | ||||
|  | ||||
|     int vi; | ||||
|     memcpy(&vi,  &bq4_0->qs[sizeof(int) * (iqs + 0)], sizeof(int)); | ||||
|     const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); | ||||
|     const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_0)]); | ||||
|  | ||||
|     const float d = __half2float(bq4_0->d) * __half2float(bq8_1->d); | ||||
|  | ||||
|     // subtract 8 from each quantized value | ||||
|     const int vi0 = __vsub4((vi >> 0) & 0x0F0F0F0F, 0x08080808); | ||||
|     const int vi1 = __vsub4((vi >> 4) & 0x0F0F0F0F, 0x08080808); | ||||
|  | ||||
|     // SIMD dot product of quantized values | ||||
|     int sumi = __dp4a(vi0, ui0, 0); | ||||
|     sumi     = __dp4a(vi1, ui1, sumi); | ||||
|  | ||||
|     return sumi*d; | ||||
| #else | ||||
|     return 0.0f; // only to satisfy the compiler | ||||
| #endif // __CUDA_ARCH__ >= 600 | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ __forceinline__ dst_t vec_dot_q4_1_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { | ||||
| #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics | ||||
|     const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq; | ||||
|  | ||||
|     const int vi  = *((int *) &bq4_1->qs[sizeof(int) * (iqs + 0)]); | ||||
|     const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); | ||||
|     const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_1)]); | ||||
|  | ||||
|     const float d = __half2float(bq4_1->d) * __half2float(bq8_1->d); | ||||
|     const float m = bq4_1->m; | ||||
|     const float s = bq8_1->s; | ||||
|  | ||||
|     const int vi0 = (vi >> 0) & 0x0F0F0F0F; | ||||
|     const int vi1 = (vi >> 4) & 0x0F0F0F0F; | ||||
|  | ||||
|     // SIMD dot product of quantized values | ||||
|     int sumi = __dp4a(vi0, ui0, 0); | ||||
|     sumi     = __dp4a(vi1, ui1, sumi); | ||||
|  | ||||
|     return sumi*d + m*s / QI4_1; // scale sum by QI4_1 because there are QI4_1 threads working on this block | ||||
| #else | ||||
|     return 0.0f; // only to satisfy the compiler | ||||
| #endif // __CUDA_ARCH__ >= 600 | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ __forceinline__ dst_t vec_dot_q5_0_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { | ||||
| #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics | ||||
|     const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq; | ||||
|  | ||||
|     int qs; | ||||
|     memcpy(&qs, &bq5_0->qs[sizeof(int) * (iqs + 0)], sizeof(int)); | ||||
|     const int qh0 = bq5_0->qh[iqs/2 + 0] >> 4*(iqs%2); | ||||
|     const int qh1 = bq5_0->qh[iqs/2 + 2] >> 4*(iqs%2); | ||||
|     const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); | ||||
|     const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_0)]); | ||||
|  | ||||
|     const float d = __half2float(bq5_0->d) * __half2float(bq8_1->d); | ||||
|  | ||||
|     int vi0 = (qs  >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits | ||||
|     vi0    |= (qh0 <<  4) & 0x00000010; // 1 ->  5 | ||||
|     vi0    |= (qh0 << 11) & 0x00001000; // 2 -> 13 | ||||
|     vi0    |= (qh0 << 18) & 0x00100000; // 3 -> 21 | ||||
|     vi0    |= (qh0 << 25) & 0x10000000; // 4 -> 29 | ||||
|     vi0     = __vsub4(vi0,  0x10101010); // subtract 16 from quantized values | ||||
|     int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values | ||||
|  | ||||
|     int vi1 = (qs  >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits | ||||
|     vi1    |= (qh1 <<  4) & 0x00000010; // 1 ->  5 | ||||
|     vi1    |= (qh1 << 11) & 0x00001000; // 2 -> 13 | ||||
|     vi1    |= (qh1 << 18) & 0x00100000; // 3 -> 21 | ||||
|     vi1    |= (qh1 << 25) & 0x10000000; // 4 -> 29 | ||||
|     vi1     = __vsub4(vi1,  0x10101010); // subtract 16 from quantized values | ||||
|     sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values | ||||
|  | ||||
|     return sumi*d; | ||||
| #else | ||||
|     return 0.0f; // only to satisfy the compiler | ||||
| #endif // __CUDA_ARCH__ >= 600 | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ __forceinline__ dst_t vec_dot_q5_1_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { | ||||
| #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics | ||||
|     const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq; | ||||
|  | ||||
|     const int qs  = *((int *) &bq5_1->qs[sizeof(int) * (iqs + 0)]); | ||||
|     const int qh0 = bq5_1->qh[iqs/2 + 0] >> 4*(iqs%2); | ||||
|     const int qh1 = bq5_1->qh[iqs/2 + 2] >> 4*(iqs%2); | ||||
|     const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); | ||||
|     const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_1)]); | ||||
|  | ||||
|     const float d = __half2float(bq5_1->d) * __half2float(bq8_1->d); | ||||
|     const float m = bq5_1->m; | ||||
|     const float s = bq8_1->s; | ||||
|  | ||||
|     int vi0 = (qs  >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits | ||||
|     vi0    |= (qh0 <<  4) & 0x00000010; // 1 ->  5 | ||||
|     vi0    |= (qh0 << 11) & 0x00001000; // 2 -> 13 | ||||
|     vi0    |= (qh0 << 18) & 0x00100000; // 3 -> 21 | ||||
|     vi0    |= (qh0 << 25) & 0x10000000; // 4 -> 29 | ||||
|     int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values | ||||
|  | ||||
|     int vi1 = (qs  >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits | ||||
|     vi1    |= (qh1 <<  4) & 0x00000010; // 1 ->  5 | ||||
|     vi1    |= (qh1 << 11) & 0x00001000; // 2 -> 13 | ||||
|     vi1    |= (qh1 << 18) & 0x00100000; // 3 -> 21 | ||||
|     vi1    |= (qh1 << 25) & 0x10000000; // 4 -> 29 | ||||
|     sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values | ||||
|  | ||||
|     return sumi*d + m*s / QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block | ||||
| #else | ||||
|     return 0.0f; // only to satisfy the compiler | ||||
| #endif // __CUDA_ARCH__ >= 600 | ||||
| } | ||||
|  | ||||
| template<typename dst_t> | ||||
| static __device__ __forceinline__ dst_t vec_dot_q8_0_q8_1(const void * vbq, const block_q8_1 * bq8_1, const int iqs) { | ||||
| #if __CUDA_ARCH__ >= 600 // lowest compute capability for integer intrinsics | ||||
|     const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq; | ||||
|  | ||||
|     int vi; | ||||
|     memcpy(&vi,  &bq8_0->qs[sizeof(int) * (iqs + 0)], sizeof(int)); | ||||
|     const int ui = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]); | ||||
|  | ||||
|     const float d = __half2float(bq8_0->d) * __half2float(bq8_1->d); | ||||
|  | ||||
|     // SIMD dot product of quantized values | ||||
|     int sumi = __dp4a(vi, ui, 0); | ||||
|  | ||||
|     return sumi*d; | ||||
| #else | ||||
|     return 0.0f; // only to satisfy the compiler | ||||
| #endif // __CUDA_ARCH__ >= 600 | ||||
| } | ||||
|  | ||||
| template <typename dst_t, int qk, int qi, typename block_q_t, vec_dot_q_cuda_t<dst_t> vec_dot_q_cuda> | ||||
| static __global__ void mul_mat_vec_q(const void * vx, const void * vy, dst_t * dst, const int ncols, const int nrows) { | ||||
|     const int row = blockIdx.y*blockDim.y + threadIdx.y; | ||||
|  | ||||
|     if (row >= nrows) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int blocks_per_row = ncols / qk; | ||||
|     const int blocks_per_warp = WARP_SIZE / qi; | ||||
|  | ||||
| // partial sum for each thread | ||||
|     float tmp = 0.0f; | ||||
|  | ||||
|     const block_q_t  * x = (const block_q_t  *) vx; | ||||
|     const block_q8_1 * y = (const block_q8_1 *) vy; | ||||
|  | ||||
|     for (int i = 0; i < blocks_per_row; i += blocks_per_warp) { | ||||
|         const int ibx = row*blocks_per_row + i + threadIdx.x / qi; // x block index | ||||
|  | ||||
|         const int iby = i + threadIdx.x / qi; // y block index | ||||
|  | ||||
|         const int iqs  = threadIdx.x % qi; // x block quant index when casting the quants to int | ||||
|  | ||||
|         tmp += (float)vec_dot_q_cuda(&x[ibx], &y[iby], iqs); | ||||
|     } | ||||
|  | ||||
|     // sum up partial sums and write back result | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     if (threadIdx.x == 0) { | ||||
|         dst[row] = (dst_t)tmp; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template <typename src1_t, typename dst_t, int qk, int qr, dequantize_kernel_t<dst_t> dequantize_kernel> | ||||
| static __global__ void dequantize_mul_mat_vec(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows) { | ||||
|     // qk = quantized weights per x block | ||||
|     // qr = number of quantized weights per data value in x block | ||||
|     const int row = blockIdx.y*blockDim.y + threadIdx.y; | ||||
|  | ||||
|     if (row >= nrows) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     const int tid = threadIdx.x; | ||||
|  | ||||
|     const int iter_stride = 2*GGML_CUDA_DMMV_X; | ||||
|     const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter | ||||
|     const int y_offset = qr == 1 ? 1 : qk/2; | ||||
|  | ||||
|     vec2_t<dst_t> tmp2 = make_vec2_t<dst_t>(0, 0); // partial sum for thread in warp | ||||
|  | ||||
|     for (int i = 0; i < ncols; i += iter_stride) { | ||||
|         const int col = i + vals_per_iter*tid; | ||||
|         const int ib = (row*ncols + col)/qk; // x block index | ||||
|         const int iqs = (col%qk)/qr; // x quant index | ||||
|         const int iybs = col - col%qk; // y block start index | ||||
|  | ||||
| // processing >2 values per i iter is faster for fast GPUs | ||||
| #pragma unroll | ||||
|         for (int j = 0; j < vals_per_iter; j += 2) { | ||||
|             // process 2 vals per j iter | ||||
|             // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val | ||||
|  | ||||
|             // dequantize | ||||
|             vec2_t<dst_t> xc; | ||||
|             dequantize_kernel(vx, ib, iqs + j/qr, xc); | ||||
|  | ||||
|             // matrix multiplication | ||||
|             vec2_t<dst_t> yc = make_vec2_t<dst_t>( | ||||
|                 y[iybs + iqs + j/qr + 0], | ||||
|                 y[iybs + iqs + j/qr + y_offset]); | ||||
|             tmp2 += xc * yc; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // sum up partial sums and write back result | ||||
|     // TODO: reducing as half2 may be faster, but requires special handling for float2 | ||||
|     dst_t tmp = tmp2.x + tmp2.y; | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     if (tid == 0) { | ||||
|         dst[row] = tmp; | ||||
|     } | ||||
| } | ||||
|  | ||||
| template <typename src1_t, typename dst_t, int n_thread, dot_kernel_k_t<src1_t, dst_t> dot_kernel> | ||||
| static __global__ void dequantize_mul_mat_vec_k(const void * vx, const src1_t * y, dst_t * dst, const int ncols) { | ||||
|     const int row = blockIdx.x*blockDim.y + threadIdx.y; | ||||
|     const int tid = threadIdx.x; | ||||
|  | ||||
|     const int iter_stride = QK_K; | ||||
|     const int vals_per_iter = iter_stride / n_thread; | ||||
|     const int num_blocks_per_row = ncols / QK_K; | ||||
|     const int ib0 = row*num_blocks_per_row; | ||||
|  | ||||
|     dst_t tmp = 0; // partial sum for thread in warp | ||||
|  | ||||
|     for (int i = 0; i < ncols; i += iter_stride) { | ||||
|         const int col = i + vals_per_iter*tid; | ||||
|         const int ib = ib0 + col/QK_K; // x block index | ||||
|         const int iqs = col%QK_K; // x quant index | ||||
|         const int iybs = col - col%QK_K; // y block start index | ||||
|  | ||||
|         dst_t v; | ||||
|         dot_kernel(vx, ib, iqs, y + iybs, v); | ||||
|         tmp += v; | ||||
|     } | ||||
|  | ||||
|     // sum up partial sums and write back result | ||||
| #pragma unroll | ||||
|     for (int mask = 16; mask > 0; mask >>= 1) { | ||||
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); | ||||
|     } | ||||
|  | ||||
|     if (tid == 0) { | ||||
|         dst[row] = tmp; | ||||
|     } | ||||
| } | ||||
							
								
								
									
										4779
									
								
								ggml-cuda.cu
									
									
									
									
									
								
							
							
						
						
									
										4779
									
								
								ggml-cuda.cu
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										23
									
								
								ggml-cuda.h
									
									
									
									
									
								
							
							
						
						
									
										23
									
								
								ggml-cuda.h
									
									
									
									
									
								
							| @@ -6,30 +6,13 @@ | ||||
| extern "C" { | ||||
| #endif | ||||
|  | ||||
| #define GGML_CUDA_MAX_DEVICES       16 | ||||
|  | ||||
| void   ggml_init_cublas(void); | ||||
| void   ggml_cuda_set_tensor_split(const float * tensor_split); | ||||
|  | ||||
| void   ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | ||||
| bool   ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | ||||
| size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); | ||||
| void   ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); | ||||
|  | ||||
| // TODO: export these with GGML_API | ||||
| void * ggml_cuda_host_malloc(size_t size); | ||||
| void   ggml_cuda_host_free(void * ptr); | ||||
|  | ||||
| void   ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor); | ||||
| // backend API | ||||
|  | ||||
| struct ggml_backend ggml_backend_cuda_init(); | ||||
|  | ||||
| void   ggml_cuda_free_data(struct ggml_tensor * tensor); | ||||
| void   ggml_cuda_assign_buffers(struct ggml_tensor * tensor); | ||||
| void   ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor); | ||||
| void   ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor); | ||||
| void   ggml_cuda_set_main_device(int main_device); | ||||
| void   ggml_cuda_set_scratch_size(size_t scratch_size); | ||||
| void   ggml_cuda_free_scratch(void); | ||||
| bool   ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); | ||||
|  | ||||
| #ifdef  __cplusplus | ||||
| } | ||||
|   | ||||
							
								
								
									
										58
									
								
								ggml.h
									
									
									
									
									
								
							
							
						
						
									
										58
									
								
								ggml.h
									
									
									
									
									
								
							| @@ -199,6 +199,7 @@ | ||||
| #define GGML_MAX_CONTEXTS      64 | ||||
| #define GGML_MAX_SRC           6 | ||||
| #define GGML_MAX_NAME          48 | ||||
| #define GGML_MAX_OP_PARAMS     16 | ||||
| #define GGML_DEFAULT_N_THREADS 4 | ||||
|  | ||||
|  | ||||
| @@ -285,12 +286,6 @@ extern "C" { | ||||
|         GGML_TYPE_COUNT, | ||||
|     }; | ||||
|  | ||||
|     enum ggml_backend { | ||||
|         GGML_BACKEND_CPU = 0, | ||||
|         GGML_BACKEND_GPU = 10, | ||||
|         GGML_BACKEND_GPU_SPLIT = 20, | ||||
|     }; | ||||
|  | ||||
|     // model file types | ||||
|     enum ggml_ftype { | ||||
|         GGML_FTYPE_UNKNOWN     = -1, | ||||
| @@ -405,8 +400,9 @@ extern "C" { | ||||
|  | ||||
|     // n-dimensional tensor | ||||
|     struct ggml_tensor { | ||||
|         struct ggml_backend * backend; | ||||
|  | ||||
|         enum ggml_type type; | ||||
|         enum ggml_backend backend; | ||||
|  | ||||
|         int     n_dims; | ||||
|         int64_t ne[GGML_MAX_DIMS]; // number of elements | ||||
| @@ -428,13 +424,19 @@ extern "C" { | ||||
|         int64_t perf_cycles; | ||||
|         int64_t perf_time_us; | ||||
|  | ||||
|         // op params | ||||
|         // allocated as int32_t to avoid alignment issues | ||||
|         int32_t params[GGML_MAX_OP_PARAMS / sizeof(uint32_t)]; | ||||
|  | ||||
|         void * data; | ||||
|  | ||||
|         char name[GGML_MAX_NAME]; | ||||
|  | ||||
|         void * extra; // extra things e.g. for ggml-cuda.cu | ||||
|  | ||||
|         char padding[8]; | ||||
|         bool visited; // used to build graphs | ||||
|  | ||||
|         char padding[4]; | ||||
|     }; | ||||
|  | ||||
|     static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); | ||||
| @@ -459,6 +461,7 @@ extern "C" { | ||||
|     struct ggml_cgraph { | ||||
|         int n_nodes; | ||||
|         int n_leafs; | ||||
|         bool closed; | ||||
|  | ||||
|         struct ggml_tensor * nodes[GGML_MAX_NODES]; | ||||
|         struct ggml_tensor * grads[GGML_MAX_NODES]; | ||||
| @@ -470,23 +473,27 @@ extern "C" { | ||||
|         int64_t perf_time_us; | ||||
|     }; | ||||
|  | ||||
|     // scratch buffer | ||||
|     struct ggml_scratch { | ||||
|         size_t offs; | ||||
|         size_t size; | ||||
|         void * data; | ||||
|     /* | ||||
|     TODO | ||||
|     enum ggml_alloc_mode { | ||||
|         GGML_ALLOC_IMMEDIATE, | ||||
|         GGML_ALLOC_NONE, | ||||
|         GGML_ALLOC_COMPUTE_SEQ, | ||||
|         GGML_ALLOC_COMPUTE_PAR, | ||||
|     }; | ||||
|     */ | ||||
|  | ||||
|     // context parameters | ||||
|     struct ggml_init_params { | ||||
|         // memory pool | ||||
|         size_t mem_size;   // bytes | ||||
|         void * mem_buffer; // if NULL, memory will be allocated internally | ||||
|         struct ggml_buffer * buffer; | ||||
|  | ||||
|         bool   no_alloc;   // don't allocate memory for the tensor data | ||||
|         //enum ggml_alloc_mode alloc_mode; // TODO: replace the above with this | ||||
|  | ||||
|         enum ggml_type compute_type;         // type of intermediate results | ||||
|     }; | ||||
|  | ||||
|  | ||||
|     // compute types | ||||
|  | ||||
|     // task types | ||||
|     // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled. | ||||
|     // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995. | ||||
|     enum ggml_task_type { | ||||
| @@ -547,19 +554,20 @@ extern "C" { | ||||
|     GGML_API size_t ggml_tensor_overhead(void); | ||||
|  | ||||
|     // main | ||||
|  | ||||
|     GGML_API struct ggml_init_params ggml_init_params_default(void); | ||||
|     GGML_API struct ggml_context *   ggml_init(struct ggml_init_params params); | ||||
|     GGML_API void                    ggml_free(struct ggml_context * ctx); | ||||
|  | ||||
|     GGML_API size_t  ggml_used_mem(const struct ggml_context * ctx); | ||||
|  | ||||
|     GGML_API size_t  ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch); | ||||
|     GGML_API void    ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc); | ||||
|  | ||||
|     GGML_API void *  ggml_get_mem_buffer     (const struct ggml_context * ctx); | ||||
|     GGML_API size_t  ggml_get_mem_size       (const struct ggml_context * ctx); | ||||
|     GGML_API size_t  ggml_get_max_tensor_size(const struct ggml_context * ctx); | ||||
|  | ||||
|     GGML_API struct ggml_backend * ggml_get_ctx_backend(struct ggml_context * ctx); | ||||
|  | ||||
|     GGML_API struct ggml_tensor * ggml_new_tensor( | ||||
|             struct ggml_context * ctx, | ||||
|             enum   ggml_type type, | ||||
| @@ -1347,6 +1355,8 @@ extern "C" { | ||||
|     GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); | ||||
|     GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); | ||||
|  | ||||
|     GGML_API void ggml_graph_close  (struct ggml_cgraph * cgraph); | ||||
|  | ||||
|     // ggml_graph_plan() has to be called before ggml_graph_compute() | ||||
|     // when plan.work_size > 0, caller must allocate memory for plan.work_data | ||||
|     GGML_API struct ggml_cplan ggml_graph_plan   (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); | ||||
| @@ -1561,9 +1571,8 @@ extern "C" { | ||||
|     GGML_API int ggml_cpu_has_fp16_va    (void); | ||||
|     GGML_API int ggml_cpu_has_wasm_simd  (void); | ||||
|     GGML_API int ggml_cpu_has_blas       (void); | ||||
|     GGML_API int ggml_cpu_has_cublas     (void); | ||||
|     GGML_API int ggml_cpu_has_cuda       (void); | ||||
|     GGML_API int ggml_cpu_has_clblast    (void); | ||||
|     GGML_API int ggml_cpu_has_gpublas    (void); | ||||
|     GGML_API int ggml_cpu_has_sse3       (void); | ||||
|     GGML_API int ggml_cpu_has_vsx        (void); | ||||
|  | ||||
| @@ -1594,3 +1603,6 @@ extern "C" { | ||||
| #ifdef  __cplusplus | ||||
| } | ||||
| #endif | ||||
|  | ||||
|  | ||||
| #include "ggml-backend.h" | ||||
|   | ||||
							
								
								
									
										41
									
								
								llama-util.h
									
									
									
									
									
								
							
							
						
						
									
										41
									
								
								llama-util.h
									
									
									
									
									
								
							| @@ -203,6 +203,17 @@ struct llama_mmap { | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     void discard(void * addr, size_t len) { | ||||
|         // align to the page size | ||||
|         int page_size = sysconf(_SC_PAGESIZE); | ||||
|         addr = (void *) (((uintptr_t) addr) & ~(page_size - 1)); | ||||
|         len = (len + page_size - 1) & ~(page_size - 1); | ||||
|         if (madvise(addr, len, MADV_DONTNEED)) { | ||||
|             fprintf(stderr, "warning: madvise(.., MADV_DONTNEED) failed: %s\n", | ||||
|                     strerror(errno)); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     ~llama_mmap() { | ||||
|         munmap(addr, size); | ||||
|     } | ||||
| @@ -247,6 +258,10 @@ struct llama_mmap { | ||||
|         #endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8 | ||||
|     } | ||||
|  | ||||
|     void discard(void * addr, size_t len) { | ||||
|         VirtualAlloc(addr, len, MEM_RESET, PAGE_NOACCESS); | ||||
|     } | ||||
|  | ||||
|     ~llama_mmap() { | ||||
|         if (!UnmapViewOfFile(addr)) { | ||||
|             fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n", | ||||
| @@ -262,6 +277,13 @@ struct llama_mmap { | ||||
|  | ||||
|         throw std::runtime_error(std::string("mmap not supported")); | ||||
|     } | ||||
|  | ||||
|     void discard(void * addr, size_t len) { | ||||
|         (void) addr; | ||||
|         (void) len; | ||||
|  | ||||
|         throw std::runtime_error(std::string("mmap not supported")); | ||||
|     } | ||||
| #endif | ||||
| }; | ||||
|  | ||||
| @@ -451,14 +473,14 @@ struct llama_buffer { | ||||
|     llama_buffer& operator=(llama_buffer&&) = delete; | ||||
| }; | ||||
|  | ||||
| #ifdef GGML_USE_CUBLAS | ||||
| #if defined(GGML_USE_CUDA) | ||||
| #include "ggml-cuda.h" | ||||
| struct llama_ctx_buffer { | ||||
| struct llama_host_buffer { | ||||
|     uint8_t * addr = NULL; | ||||
|     bool is_cuda; | ||||
|     size_t size = 0; | ||||
|  | ||||
|     llama_ctx_buffer() = default; | ||||
|     llama_host_buffer() = default; | ||||
|  | ||||
|     void resize(size_t size) { | ||||
|         free(); | ||||
| @@ -487,18 +509,19 @@ struct llama_ctx_buffer { | ||||
|         addr = NULL; | ||||
|     } | ||||
|  | ||||
|     ~llama_ctx_buffer() { | ||||
|     ~llama_host_buffer() { | ||||
|         free(); | ||||
|     } | ||||
|  | ||||
|     // disable copy and move | ||||
|     llama_ctx_buffer(const llama_ctx_buffer&) = delete; | ||||
|     llama_ctx_buffer(llama_ctx_buffer&&) = delete; | ||||
|     llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete; | ||||
|     llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete; | ||||
|     llama_host_buffer(const llama_host_buffer&) = delete; | ||||
|     llama_host_buffer(llama_host_buffer&&) = delete; | ||||
|     llama_host_buffer& operator=(const llama_host_buffer&) = delete; | ||||
|     llama_host_buffer& operator=(llama_host_buffer&&) = delete; | ||||
| }; | ||||
| #else | ||||
| typedef llama_buffer llama_ctx_buffer; | ||||
| typedef llama_buffer llama_host_buffer; | ||||
| #endif | ||||
| typedef llama_buffer llama_ctx_buffer; | ||||
|  | ||||
| #endif | ||||
|   | ||||
							
								
								
									
										7
									
								
								llama.h
									
									
									
									
									
								
							
							
						
						
									
										7
									
								
								llama.h
									
									
									
									
									
								
							| @@ -2,12 +2,7 @@ | ||||
| #define LLAMA_H | ||||
|  | ||||
| #include "ggml.h" | ||||
| #ifdef GGML_USE_CUBLAS | ||||
| #include "ggml-cuda.h" | ||||
| #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES | ||||
| #else | ||||
| #define LLAMA_MAX_DEVICES 1 | ||||
| #endif // GGML_USE_CUBLAS | ||||
| #include <stddef.h> | ||||
| #include <stdint.h> | ||||
| #include <stdbool.h> | ||||
| @@ -48,7 +43,7 @@ | ||||
|  | ||||
| #define LLAMA_DEFAULT_SEED           0xFFFFFFFF | ||||
|  | ||||
| #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) | ||||
| #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) | ||||
| // Defined when llama.cpp is compiled with support for offloading model layers to GPU. | ||||
| #define LLAMA_SUPPORTS_GPU_OFFLOAD | ||||
| #endif | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 slaren
					slaren