mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	ggml backend interface wip
refactor ggml-cuda
This commit is contained in:
		
							
								
								
									
										435
									
								
								ggml-backend.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										435
									
								
								ggml-backend.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,435 @@ | ||||
| #include "ggml-backend.h" | ||||
| #include <assert.h> | ||||
| #include <stdarg.h> | ||||
| #include <stdio.h> | ||||
| #include <stdlib.h> | ||||
| #include <string.h> | ||||
|  | ||||
| #define UNUSED(x) (void)(x) | ||||
|  | ||||
| // backend buffer | ||||
|  | ||||
| struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors) { | ||||
|     struct ggml_buffer buffer; | ||||
|     buffer.mem_size = ggml_tensor_overhead() * max_tensors; | ||||
|     buffer.mem_buffer = malloc(buffer.mem_size); | ||||
|     buffer.backend = backend; | ||||
|     // size += 128 * max_tensors; // alignment overhead | ||||
|     buffer.backend_buffer = backend->interface->alloc_buffer(backend->context, size); | ||||
|     return buffer; | ||||
| } | ||||
|  | ||||
| void ggml_backend_free_buffer(struct ggml_buffer * buffer) { | ||||
|     struct ggml_backend * backend = buffer->backend; | ||||
|     backend->interface->free_buffer(backend->context, buffer->backend_buffer); | ||||
|     free(buffer->mem_buffer); | ||||
| } | ||||
|  | ||||
| // backend copy | ||||
|  | ||||
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | ||||
|     if (a->type != b->type) { | ||||
|         return false; | ||||
|     } | ||||
|     for (int i = 0; i < GGML_MAX_DIMS; i++) { | ||||
|         if (a->ne[i] != b->ne[i]) { | ||||
|             return false; | ||||
|         } | ||||
|         if (a->nb[i] != b->nb[i]) { | ||||
|             return false; | ||||
|         } | ||||
|     } | ||||
|     return true; | ||||
| } | ||||
|  | ||||
| void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src) { | ||||
|     //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); | ||||
|     //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); | ||||
|     GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); | ||||
|  | ||||
|     // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); | ||||
|  | ||||
|     if (src == dst) { | ||||
|         return; | ||||
|     } | ||||
|  | ||||
|     if (dst->backend->interface->cpy_tensor_from != NULL) { | ||||
|         dst->backend->interface->cpy_tensor_from(dst->backend->context, src, dst); | ||||
|     } else if (src->backend->interface->cpy_tensor_to != NULL) { | ||||
|         src->backend->interface->cpy_tensor_to(src->backend->context, src, dst); | ||||
|     } else { | ||||
|         // not ideal, but shouldn't be hit when copying from/to CPU | ||||
|         // TODO: print a performance warning in debug builds | ||||
|         size_t nbytes = ggml_nbytes(src); | ||||
|         void * data = malloc(nbytes); | ||||
|         ggml_backend_get_tensor(src, data, 0, nbytes); | ||||
|         ggml_backend_set_tensor(dst, data, 0, nbytes); | ||||
|         free(data); | ||||
|     } | ||||
| } | ||||
|  | ||||
| // backend CPU | ||||
|  | ||||
| struct ggml_backend_cpu_context { | ||||
|     int n_threads; | ||||
|     void * work_data; | ||||
|     size_t work_size; | ||||
| }; | ||||
|  | ||||
| static const char * ggml_backend_cpu_name(ggml_backend_context_t ctx) { | ||||
|     return "CPU"; | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_free_context(ggml_backend_context_t ctx) { | ||||
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; | ||||
|     free(cpu_ctx->work_data); | ||||
|     free(ctx); | ||||
| } | ||||
|  | ||||
| struct cpu_backend_buffer { | ||||
|     void * data; | ||||
|     size_t offset; | ||||
|     size_t size; | ||||
| }; | ||||
|  | ||||
| static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 | ||||
|  | ||||
| static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { | ||||
|     assert(alignment && !(alignment & (alignment - 1))); // power of 2 | ||||
|     size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; | ||||
|     return offset + align; | ||||
| } | ||||
|  | ||||
| static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_context_t ctx, size_t size) { | ||||
|     struct cpu_backend_buffer * buffer = malloc(sizeof(struct cpu_backend_buffer)); | ||||
|     buffer->data = malloc(size); | ||||
|     buffer->offset = aligned_offset(buffer->data, 0, TENSOR_ALIGNMENT); | ||||
|     buffer->size = size; | ||||
|     return buffer; | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_free_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) { | ||||
|     struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; | ||||
|     free(cpu_buffer->data); | ||||
|     free(cpu_buffer); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_reset_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) { | ||||
|     struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; | ||||
|     cpu_buffer->offset = aligned_offset(cpu_buffer->data, 0, TENSOR_ALIGNMENT); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_alloc_tensor(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | ||||
|     struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; | ||||
|  | ||||
|     // TODO: make this error recoverable | ||||
|     if (cpu_buffer->offset + ggml_nbytes(tensor) > cpu_buffer->size) { | ||||
|         fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n", | ||||
|                 __func__, ggml_nbytes(tensor), cpu_buffer->size - cpu_buffer->offset); | ||||
|         GGML_ASSERT(false); | ||||
|     } | ||||
|  | ||||
|     tensor->data = (char*)cpu_buffer->data + cpu_buffer->offset; | ||||
|     cpu_buffer->offset = aligned_offset(cpu_buffer->data, cpu_buffer->offset + ggml_nbytes(tensor), TENSOR_ALIGNMENT); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_set_tensor_async(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | ||||
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); | ||||
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | ||||
|  | ||||
|     memcpy((char *)tensor->data + offset, data, size); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_get_tensor_async(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { | ||||
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); | ||||
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); | ||||
|  | ||||
|     memcpy(data, (const char *)tensor->data + offset, size); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_synchronize(ggml_backend_context_t ctx) { | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) { | ||||
|     ggml_backend_get_tensor(src, dst->data, 0, ggml_nbytes(src)); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) { | ||||
|     ggml_backend_set_tensor(dst, src->data, 0, ggml_nbytes(src)); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| struct ggml_backend_cpu_plan { | ||||
|     struct ggml_cplan cplan; | ||||
|     struct ggml_cgraph cgraph; | ||||
| }; | ||||
|  | ||||
| static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) { | ||||
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; | ||||
|  | ||||
|     struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan)); | ||||
|  | ||||
|     cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | ||||
|     cpu_plan->cgraph = *cgraph; | ||||
|  | ||||
|     if (cpu_plan->cplan.work_size > 0) { | ||||
|         cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); | ||||
|     } | ||||
|  | ||||
|     return cpu_plan; | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_graph_plan_free(ggml_backend_context_t ctx, ggml_graph_plan_t plan) { | ||||
|     struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; | ||||
|  | ||||
|     free(cpu_plan->cplan.work_data); | ||||
|     free(cpu_plan); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_graph_plan_compute(ggml_backend_context_t ctx, ggml_graph_plan_t plan) { | ||||
|     struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; | ||||
|  | ||||
|     ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); | ||||
|  | ||||
|     UNUSED(ctx); | ||||
| } | ||||
|  | ||||
| static void ggml_backend_cpu_graph_compute(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) { | ||||
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; | ||||
|  | ||||
|     struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); | ||||
|  | ||||
|     if (cpu_ctx->work_size < cplan.work_size) { | ||||
|         // TODO: may be faster to free and use malloc to avoid the copy | ||||
|         cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); | ||||
|         cpu_ctx->work_size = cplan.work_size; | ||||
|     } | ||||
|  | ||||
|     cplan.work_data = cpu_ctx->work_data; | ||||
|  | ||||
|     ggml_graph_compute(cgraph, &cplan); | ||||
| } | ||||
|  | ||||
| static struct ggml_backend_interface cpu_backend_interface = { | ||||
|     /* .get_name            = */ ggml_backend_cpu_name, | ||||
|     /* .free_context        = */ ggml_backend_cpu_free_context, | ||||
|     /* .alloc_buffer        = */ ggml_backend_cpu_alloc_buffer, | ||||
|     /* .free_buffer         = */ ggml_backend_cpu_free_buffer, | ||||
|     /* .reset_buffer        = */ ggml_backend_cpu_reset_buffer, | ||||
|     /* .alloc_tensor        = */ ggml_backend_cpu_alloc_tensor, | ||||
|     /* .set_tensor_async    = */ ggml_backend_cpu_set_tensor_async, | ||||
|     /* .get_tensor_async    = */ ggml_backend_cpu_get_tensor_async, | ||||
|     /* .synchronize         = */ ggml_backend_cpu_synchronize, | ||||
|     /* .cpy_tensor_from     = */ ggml_backend_cpu_cpy_tensor_from, | ||||
|     /* .cpy_tensor_to       = */ ggml_backend_cpu_cpy_tensor_to, | ||||
|     /* .graph_plan_create   = */ ggml_backend_cpu_graph_plan_create, | ||||
|     /* .graph_plan_free     = */ ggml_backend_cpu_graph_plan_free, | ||||
|     /* .graph_plan_compute  = */ ggml_backend_cpu_graph_plan_compute, | ||||
|     /* .graph_compute       = */ ggml_backend_cpu_graph_compute | ||||
| }; | ||||
|  | ||||
| struct ggml_backend ggml_backend_cpu_init(void) { | ||||
|     struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); | ||||
|     ctx->n_threads = GGML_DEFAULT_N_THREADS; | ||||
|     ctx->work_data = NULL; | ||||
|     ctx->work_size = 0; | ||||
|  | ||||
|     struct ggml_backend cpu_backend = { | ||||
|         /* .interface = */ &cpu_backend_interface, | ||||
|         /* .context   = */ ctx | ||||
|     }; | ||||
|     return cpu_backend; | ||||
| } | ||||
|  | ||||
| void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads) { | ||||
|     struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; | ||||
|     ctx->n_threads = n_threads; | ||||
| } | ||||
|  | ||||
| // splits | ||||
|  | ||||
| struct ggml_graph_splits ggml_graph_split_init(void) { | ||||
|     struct ggml_graph_splits splits = {0}; | ||||
|     return splits; | ||||
| } | ||||
|  | ||||
| // TODO: this can be removed after allocating the graphs in a ggml_context | ||||
| void ggml_graph_splits_free(struct ggml_graph_splits * splits) { | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         if (splits->splits[i].graph) { | ||||
|             free(splits->splits[i].graph); | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, va_list args) { | ||||
|     GGML_ASSERT(splits->n_splits < GGML_MAX_SPLITS); | ||||
|  | ||||
|     struct ggml_graph_split * split = &splits->splits[splits->n_splits]; | ||||
|  | ||||
|     if ((*inputs[0])->backend == ggml_get_ctx_backend(ctx)) { | ||||
|         if (splits->n_splits > 0) { | ||||
|             char name[GGML_MAX_NAME - 1]; // silence -Wformat-truncation | ||||
|             vsnprintf(name, sizeof(name), fmt, args); | ||||
|             char new_name[GGML_MAX_NAME]; | ||||
|             snprintf(new_name, sizeof(new_name), "%s,%s", splits->splits[splits->n_splits - 1].name, name); | ||||
|             strcpy(splits->splits[splits->n_splits - 1].name, new_name); | ||||
|             return; | ||||
|         } | ||||
|         // always add the first split | ||||
|         int i = 0; | ||||
|         while (inputs[i] != NULL) { | ||||
|             GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); | ||||
|             split->src_inputs[i] = *inputs[i]; | ||||
|             split->dst_inputs[i] = *inputs[i]; | ||||
|             i++; | ||||
|         } | ||||
|         split->src_inputs[i] = NULL; | ||||
|         split->dst_inputs[i] = NULL; | ||||
|     } else { | ||||
|         int i = 0; | ||||
|         while (inputs[i] != NULL) { | ||||
|             GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); | ||||
|             split->src_inputs[i] = *inputs[i]; | ||||
|             split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]); | ||||
|             // TODO: maybe support different layings in ggml_backend_cpy_tensor instead | ||||
|             for (int j = 0; j < GGML_MAX_DIMS; j++) { | ||||
|                 split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j]; | ||||
|             } | ||||
|             ggml_set_name(split->dst_inputs[i], ggml_get_name(*inputs[i])); | ||||
|             *inputs[i] = split->dst_inputs[i]; | ||||
|             i++; | ||||
|         } | ||||
|         split->src_inputs[i] = NULL; | ||||
|         split->dst_inputs[i] = NULL; | ||||
|     } | ||||
|  | ||||
|     vsnprintf(split->name, GGML_MAX_NAME, fmt, args); | ||||
|     split->graph = NULL; | ||||
|     splits->n_splits++; | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** input, struct ggml_context * ctx, const char * fmt, ...) { | ||||
|     va_list args; | ||||
|     va_start(args, fmt); | ||||
|     ggml_graph_splits_add_n_va(splits, input, ctx, fmt, args); | ||||
|     va_end(args); | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...) { | ||||
|     va_list args; | ||||
|     va_start(args, fmt); | ||||
|     ggml_graph_splits_add_n_va(splits, (struct ggml_tensor**[2]){ input, NULL }, ctx, fmt, args); | ||||
|     va_end(args); | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output) { | ||||
|     struct ggml_tensor *last_outputs[2] = { output, NULL }; | ||||
|     struct ggml_tensor ** outputs; | ||||
|  | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         struct ggml_graph_split * split = &splits->splits[i]; | ||||
|  | ||||
|         if (i < splits->n_splits - 1) { | ||||
|             outputs = splits->splits[i + 1].src_inputs; | ||||
|         } else { | ||||
|             outputs = last_outputs; | ||||
|         } | ||||
|  | ||||
|         // build the graph | ||||
|         // TODO: allocate graphs in context | ||||
|         split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph)); | ||||
|         memset(split->graph, 0, sizeof(struct ggml_cgraph)); | ||||
|         // *split->graph = ggml_build_forward_range(output, split->input); | ||||
|         // *split->graph = ggml_build_forward(output); | ||||
|         for (int j = 0; outputs[j] != NULL; j++) { | ||||
|             ggml_build_forward_expand(split->graph, outputs[j]); | ||||
|         } | ||||
|  | ||||
|         for (int j = 1; j < split->graph->n_nodes; j++) { | ||||
|             if (split->graph->nodes[j]->backend != split->graph->nodes[0]->backend) { | ||||
|                 fprintf(stderr, "split %s: node %s has different backend (%s) than the first node (%s)\n", | ||||
|                     split->name, split->graph->nodes[j]->name, | ||||
|                     ggml_backend_name(split->graph->nodes[j]->backend), | ||||
|                     ggml_backend_name(split->graph->nodes[0]->backend)); | ||||
|             } | ||||
|         } | ||||
|         for (int j = 1; j < split->graph->n_leafs; j++) { | ||||
|             if (split->graph->leafs[j]->backend != split->graph->leafs[0]->backend) { | ||||
|                 fprintf(stderr, "split %s: leaf %s has different backend (%s) than the first leaf (%s)\n", | ||||
|                     split->name, split->graph->leafs[j]->name, | ||||
|                     ggml_backend_name(split->graph->leafs[j]->backend), | ||||
|                     ggml_backend_name(split->graph->leafs[0]->backend)); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // close graphs | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         struct ggml_graph_split * split = &splits->splits[i]; | ||||
|         ggml_graph_close(split->graph); | ||||
|     } | ||||
| } | ||||
|  | ||||
| void ggml_graph_splits_compute(struct ggml_graph_splits * splits) { | ||||
|     uint64_t copy_us = 0; | ||||
|     uint64_t compute_cpu_us = 0; | ||||
|     uint64_t compute_gpu_us = 0; | ||||
|     int n_nodes = 0; | ||||
|     for (int i = 0; i < splits->n_splits; i++) { | ||||
|         struct ggml_graph_split * split = &splits->splits[i]; | ||||
|  | ||||
|         //printf("computing split %i (%s) on backend %s (%i nodes)\n", i, split->name, ggml_backend_name(split->dst_inputs[0]->backend), split->graph->n_nodes); | ||||
|  | ||||
|         // copy the input tensor to the backend | ||||
|         uint64_t copy_start_us = ggml_time_us(); | ||||
|         for (int j = 0; split->src_inputs[j] != NULL; j++) { | ||||
|             if (split->src_inputs[j] != split->dst_inputs[j]) { | ||||
|                 //printf("\tcopying tensor %d (%s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_nbytes(split->src_inputs[j])); | ||||
|                 ggml_backend_cpy_tensor(split->dst_inputs[j], split->src_inputs[j]); | ||||
|             } | ||||
|         } | ||||
|         ggml_backend_synchronize(split->dst_inputs[0]->backend); | ||||
|         copy_us += ggml_time_us() - copy_start_us; | ||||
|  | ||||
| #if 0 | ||||
|         char split_filename[GGML_MAX_NAME]; | ||||
|         snprintf(split_filename, GGML_MAX_NAME, "split_%i.dot", i); | ||||
|         ggml_graph_dump_dot(split->graph, NULL, split_filename); | ||||
| #endif | ||||
|         uint64_t start = ggml_time_us(); | ||||
|         ggml_backend_graph_compute(split->dst_inputs[0]->backend, split->graph); | ||||
|         ggml_backend_synchronize(split->dst_inputs[0]->backend); | ||||
|         uint64_t end = ggml_time_us(); | ||||
|         if (strcmp(ggml_backend_name(split->dst_inputs[0]->backend), "CPU") == 0) { | ||||
|             compute_cpu_us += end - start; | ||||
|         } else { | ||||
|             compute_gpu_us += end - start; | ||||
|         } | ||||
|  | ||||
|         n_nodes += split->graph->n_nodes; | ||||
|     } | ||||
|  | ||||
|     //printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0); | ||||
|     //exit(0); | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 slaren
					slaren