mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	scripts : Remove missed baichuan convert script (#4127)
This commit is contained in:
		| @@ -1,315 +0,0 @@ | ||||
| #!/usr/bin/env python3 | ||||
| # HF baichuan --> gguf conversion | ||||
|  | ||||
| from __future__ import annotations | ||||
|  | ||||
| import argparse | ||||
| import json | ||||
| import os | ||||
| import sys | ||||
| from pathlib import Path | ||||
| from typing import TYPE_CHECKING, Any | ||||
| import numpy as np | ||||
| import torch | ||||
| from sentencepiece import SentencePieceProcessor  # type: ignore[import] | ||||
|  | ||||
| if 'NO_LOCAL_GGUF' not in os.environ: | ||||
|     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) | ||||
| import gguf | ||||
|  | ||||
|  | ||||
| if TYPE_CHECKING: | ||||
|     from typing import TypeAlias | ||||
|  | ||||
| NDArray: TypeAlias = 'np.ndarray[Any, Any]' | ||||
|  | ||||
| # reverse HF permute back to original pth layout | ||||
|  | ||||
|  | ||||
| def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray: | ||||
|     if n_kv_head is not None and n_head != n_kv_head: | ||||
|         n_head //= n_kv_head | ||||
|  | ||||
|     return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||||
|             .swapaxes(1, 2) | ||||
|             .reshape(weights.shape)) | ||||
|  | ||||
| def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray: | ||||
|         r = weights.shape[0] // 3 | ||||
|         return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) | ||||
|  | ||||
| def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray: | ||||
|         r = weights.shape[0] // 3 | ||||
|         return weights[r * n_part : r * n_part + r, ...] | ||||
|  | ||||
| def count_model_parts(dir_model: str) -> int: | ||||
|     num_parts = 0 | ||||
|  | ||||
|     for filename in os.listdir(dir_model): | ||||
|         if filename.startswith("pytorch_model-"): | ||||
|             num_parts += 1 | ||||
|  | ||||
|     if num_parts > 0: | ||||
|         print("gguf: found " + str(num_parts) + " model parts") | ||||
|  | ||||
|     return num_parts | ||||
|  | ||||
|  | ||||
|  | ||||
| def parse_args() -> argparse.Namespace: | ||||
|     parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") | ||||
|     parser.add_argument( | ||||
|         "--vocab-only", action="store_true", | ||||
|         help="extract only the vocab", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--outfile", type=Path, | ||||
|         help="path to write to; default: based on input", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "model", type=Path, | ||||
|         help="directory containing model file, or model file itself (*.bin)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "ftype", type=int, choices=[0, 1], default=1, nargs='?', | ||||
|         help="output format - use 0 for float32, 1 for float16", | ||||
|     ) | ||||
|     parser.add_argument("--bigendian",   action="store_true",    help="model is executed on big endian machine") | ||||
|     return parser.parse_args() | ||||
|  | ||||
| args = parse_args() | ||||
|  | ||||
| dir_model = args.model | ||||
| ftype = args.ftype | ||||
| if not dir_model.is_dir(): | ||||
|     print(f'Error: {args.model} is not a directory', file = sys.stderr) | ||||
|     sys.exit(1) | ||||
|  | ||||
| endianess = gguf.GGUFEndian.LITTLE | ||||
| if args.bigendian: | ||||
|     endianess = gguf.GGUFEndian.BIG | ||||
| endianess_str = "Big Endian" if args.bigendian else "Little Endian" | ||||
| print(f"gguf: Conversion Endianess {endianess}") | ||||
| # possible tensor data types | ||||
| #   ftype == 0 -> float32 | ||||
| #   ftype == 1 -> float16 | ||||
|  | ||||
| # map from ftype to string | ||||
| ftype_str = ["f32", "f16"] | ||||
|  | ||||
| if args.outfile is not None: | ||||
|     fname_out = args.outfile | ||||
| else: | ||||
|     # output in the same directory as the model by default | ||||
|     fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' | ||||
|  | ||||
| print("gguf: loading model "+dir_model.name) | ||||
|  | ||||
| with open(dir_model / "config.json", "r", encoding="utf-8") as f: | ||||
|     hparams = json.load(f) | ||||
| print("hello print: ",hparams["architectures"][0]) | ||||
| if hparams["architectures"][0] != "BaichuanForCausalLM" and hparams["architectures"][0] != "BaiChuanForCausalLM": | ||||
|     print("Model architecture not supported: " + hparams["architectures"][0]) | ||||
|  | ||||
|     sys.exit() | ||||
|  | ||||
| # get number of model parts | ||||
| num_parts = count_model_parts(dir_model) | ||||
| print(f"num_parts:{num_parts}\n") | ||||
| ARCH=gguf.MODEL_ARCH.BAICHUAN | ||||
| gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) | ||||
|  | ||||
| print("gguf: get model metadata") | ||||
|  | ||||
| block_count = hparams["num_hidden_layers"] | ||||
| head_count = hparams["num_attention_heads"] | ||||
|  | ||||
| if "num_key_value_heads" in hparams: | ||||
|     head_count_kv = hparams["num_key_value_heads"] | ||||
| else: | ||||
|     head_count_kv = head_count | ||||
|  | ||||
| if "_name_or_path" in hparams: | ||||
|     hf_repo = hparams["_name_or_path"] | ||||
| else: | ||||
|     hf_repo = "" | ||||
|  | ||||
| if "max_sequence_length" in hparams: | ||||
|     ctx_length = hparams["max_sequence_length"] | ||||
| elif "max_position_embeddings" in hparams: | ||||
|     ctx_length = hparams["max_position_embeddings"] | ||||
| elif "model_max_length" in hparams: | ||||
|     ctx_length = hparams["model_max_length"] | ||||
| else: | ||||
|     print("gguf: can not find ctx length parameter.") | ||||
|  | ||||
|     sys.exit() | ||||
|  | ||||
|  | ||||
| gguf_writer.add_name(dir_model.name) | ||||
| gguf_writer.add_source_hf_repo(hf_repo) | ||||
| gguf_writer.add_tensor_data_layout("Meta AI original pth") | ||||
| gguf_writer.add_context_length(ctx_length) | ||||
| gguf_writer.add_embedding_length(hparams["hidden_size"]) | ||||
| gguf_writer.add_block_count(block_count) | ||||
| gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | ||||
| gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) | ||||
| gguf_writer.add_head_count(head_count) | ||||
| gguf_writer.add_head_count_kv(head_count_kv) | ||||
| gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) | ||||
|  | ||||
| if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]: | ||||
|     if "type" in hparams["rope_scaling"]: | ||||
|         if hparams["rope_scaling"]["type"] == "linear": | ||||
|             gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) | ||||
|             gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"]) | ||||
|  | ||||
|  | ||||
| # TOKENIZATION | ||||
|  | ||||
| print("gguf: get tokenizer metadata") | ||||
|  | ||||
| tokens: list[bytes] = [] | ||||
| scores: list[float] = [] | ||||
| toktypes: list[int] = [] | ||||
|  | ||||
| tokenizer_model_file = dir_model / 'tokenizer.model' | ||||
| if not tokenizer_model_file.is_file(): | ||||
|     print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) | ||||
|     sys.exit(1) | ||||
|  | ||||
| # vocab type sentencepiece | ||||
| print("gguf: get sentencepiece tokenizer vocab, scores and token types") | ||||
|  | ||||
| tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) | ||||
| vocab_size = hparams.get('vocab_size') | ||||
| if vocab_size is None: | ||||
|     vocab_size = tokenizer.vocab_size() | ||||
|  | ||||
| for i in range(vocab_size): | ||||
|     text: bytes | ||||
|     score: float | ||||
|  | ||||
|     piece = tokenizer.id_to_piece(i) | ||||
|     text = piece.encode("utf-8") | ||||
|     score = tokenizer.get_score(i) | ||||
|  | ||||
|     toktype = 1  # defualt to normal token type | ||||
|     if tokenizer.is_unknown(i): | ||||
|         toktype = 2 | ||||
|     if tokenizer.is_control(i): | ||||
|         toktype = 3 | ||||
|  | ||||
|     # toktype = 4 is user-defined = tokens from added_tokens.json | ||||
|  | ||||
|     if tokenizer.is_unused(i): | ||||
|         toktype = 5 | ||||
|     if tokenizer.is_byte(i): | ||||
|         toktype = 6 | ||||
|  | ||||
|     tokens.append(text) | ||||
|     scores.append(score) | ||||
|     toktypes.append(toktype) | ||||
|  | ||||
| added_tokens_file = dir_model / 'added_tokens.json' | ||||
| if added_tokens_file.is_file(): | ||||
|     with open(added_tokens_file, "r", encoding="utf-8") as f: | ||||
|         addtokens_json = json.load(f) | ||||
|  | ||||
|         print("gguf: get added tokens") | ||||
|  | ||||
|         for key in addtokens_json: | ||||
|             tokens.append( key.encode("utf-8") ) | ||||
|             scores.append(-1000.0) | ||||
|             toktypes.append(4) # user-defined token type | ||||
|  | ||||
|  | ||||
| gguf_writer.add_tokenizer_model("llama") | ||||
| gguf_writer.add_token_list(tokens) | ||||
| gguf_writer.add_token_scores(scores) | ||||
| gguf_writer.add_token_types(toktypes) | ||||
|  | ||||
| special_vocab = gguf.SpecialVocab(dir_model, n_vocab = len(tokens)) | ||||
| special_vocab.add_to_gguf(gguf_writer) | ||||
|  | ||||
| # TENSORS | ||||
|  | ||||
| tensor_map = gguf.get_tensor_name_map(ARCH,block_count) | ||||
|  | ||||
| # tensor info | ||||
| print("gguf: get tensor metadata") | ||||
|  | ||||
| if num_parts == 0: | ||||
|     part_names = iter(("pytorch_model.bin",)) | ||||
| else: | ||||
|     part_names = ( | ||||
|         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||||
|     ) | ||||
|  | ||||
|  | ||||
| for part_name in part_names: | ||||
|     if args.vocab_only: | ||||
|         break | ||||
|     print("gguf: loading model part '" + part_name + "'") | ||||
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||||
|  | ||||
|     tmp=model_part | ||||
|     for i in range(block_count): | ||||
|         if f"model.layers.{i}.self_attn.W_pack.weight" in model_part: | ||||
|             print(f"Unpacking and permuting layer {i}") | ||||
|             tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count) | ||||
|             tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv) | ||||
|             tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2) | ||||
|             del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] | ||||
|  | ||||
|     for name in model_part.keys(): | ||||
|         data = model_part[name] | ||||
|         # we don't need these | ||||
|         if name.endswith(".rotary_emb.inv_freq"): | ||||
|             continue | ||||
|  | ||||
|         old_dtype = data.dtype | ||||
|  | ||||
|         # convert any unsupported data types to float32 | ||||
|         if data.dtype != torch.float16 and data.dtype != torch.float32: | ||||
|             data = data.to(torch.float32) | ||||
|  | ||||
|         data = data.squeeze().numpy() | ||||
|  | ||||
|         # map tensor names | ||||
|         new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) | ||||
|         if new_name is None: | ||||
|             print("Can not map tensor '" + name + "'") | ||||
|             sys.exit() | ||||
|  | ||||
|         n_dims = len(data.shape) | ||||
|         data_dtype = data.dtype | ||||
|  | ||||
|         # if f32 desired, convert any float16 to float32 | ||||
|         if ftype == 0 and data_dtype == np.float16: | ||||
|             data = data.astype(np.float32) | ||||
|  | ||||
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||||
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||||
|             data = data.astype(np.float32) | ||||
|  | ||||
|         # if f16 desired, convert any float32 2-dim weight tensors to float16 | ||||
|         if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||||
|             data = data.astype(np.float16) | ||||
|  | ||||
|         print(name + " -> " +  new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||||
|         gguf_writer.add_tensor(new_name, data) | ||||
|  | ||||
|  | ||||
| print("gguf: write header") | ||||
| gguf_writer.write_header_to_file() | ||||
| print("gguf: write metadata") | ||||
| gguf_writer.write_kv_data_to_file() | ||||
| if not args.vocab_only: | ||||
|     print("gguf: write tensors") | ||||
|     gguf_writer.write_tensors_to_file() | ||||
|  | ||||
| gguf_writer.close() | ||||
|  | ||||
| print(f"gguf: model successfully exported to '{fname_out}'") | ||||
| print("") | ||||
		Reference in New Issue
	
	Block a user
	 Galunid
					Galunid