mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-11 10:36:54 +00:00
ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support * add ggml_pad_ext for cpu & cuda backend * cuda/cpu: add im2col_3d support * cuda: make im2col a little faster * fix cuda pad/scale/im2col3d * make im2col_3d faster * gguf: support loading tensors which n_dims > GGML_MAX_DIMS * fix cuda get_rows * avoid ggml_conv_3d conflict * correct GGML_OP_COUNT assertion * avoid build failure * avoid build failure on MacOS * cuda: remove unnecessary MIN define * fix cpu im2col_3d * adjust the code style * cuda: use simpler loop in get_rows * add test_im2col_3d to test-backend-ops * test-backend-ops.cpp: remove trailing whitespace * cpu: im2col_3d support non continuous src Co-authored-by: Jeff Bolz <jbolz@nvidia.com> * fix test_im2col_3d * remove unused variables * cuda: get_rows: dfloat2 -> float2 * add test_pad_ext to test-backend-ops.cpp * add gguf_init_from_file_ext impl * Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS" This reverts commitd8377a0a37. * Revert "add gguf_init_from_file_ext impl" This reverts commitd9f1d13208. * update ggml_backend_vk_device_supports_op * fix ggml_backend_vk_device_supports_op * update other backend supports op for ggml_pad_ext * metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op --------- Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
@@ -1876,6 +1876,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_im2col_back_f32(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_IM2COL_3D:
|
||||
{
|
||||
ggml_compute_forward_im2col_3d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
ggml_compute_forward_conv_2d(params, tensor);
|
||||
@@ -2255,6 +2259,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
case GGML_OP_IM2COL_3D:
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_3D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
|
||||
@@ -7027,6 +7027,209 @@ void ggml_compute_forward_im2col_back_f32(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ggml_compute_forward_im2col_3d_f16
|
||||
// src0: kernel [OC*IC, KD, KH, KW]
|
||||
// src1: image [N*IC, ID, IH, IW]
|
||||
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
static void ggml_compute_forward_im2col_3d_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
|
||||
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
|
||||
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
|
||||
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t N = ne13 / IC;
|
||||
const int64_t ID = ne12;
|
||||
const int64_t IH = ne11;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t OC = ne03 / IC;
|
||||
GGML_UNUSED(OC);
|
||||
const int64_t KD = ne02;
|
||||
const int64_t KH = ne01;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OD = ne3 / N;
|
||||
const int64_t OH = ne2;
|
||||
const int64_t OW = ne1;
|
||||
const int64_t OH_OW = OH*OW;
|
||||
const int64_t KD_KH_KW = KD*KH*KW;
|
||||
const int64_t KH_KW = KH*KW;
|
||||
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
|
||||
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
{
|
||||
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
|
||||
|
||||
for (int64_t in = 0; in < N; in++) {
|
||||
for (int64_t iod = 0; iod < OD; iod++) {
|
||||
for (int64_t ioh = 0; ioh < OH; ioh++) {
|
||||
for (int64_t iow = 0; iow < OW; iow++) {
|
||||
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||||
|
||||
// micro kernel
|
||||
ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
|
||||
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
|
||||
|
||||
for (int64_t ikd = 0; ikd < KD; ikd++) {
|
||||
for (int64_t ikh = 0; ikh < KH; ikh++) {
|
||||
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||||
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||||
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||||
const int64_t iid = iod*s2 + ikd*d2 - p2;
|
||||
|
||||
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_im2col_3d_f32
|
||||
// src0: kernel [OC*IC, KD, KH, KW]
|
||||
// src1: image [N*IC, ID, IH, IW]
|
||||
// dst: result [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
static void ggml_compute_forward_im2col_3d_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
|
||||
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
|
||||
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
|
||||
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t N = ne13 / IC;
|
||||
const int64_t ID = ne12;
|
||||
const int64_t IH = ne11;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t OC = ne03 / IC;
|
||||
GGML_UNUSED(OC);
|
||||
const int64_t KD = ne02;
|
||||
const int64_t KH = ne01;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OD = ne3 / N;
|
||||
const int64_t OH = ne2;
|
||||
const int64_t OW = ne1;
|
||||
|
||||
const int64_t OH_OW = OH*OW;
|
||||
const int64_t KD_KH_KW = KD*KH*KW;
|
||||
const int64_t KH_KW = KH*KW;
|
||||
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
|
||||
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
{
|
||||
float * const wdata = (float *) dst->data;
|
||||
|
||||
for (int64_t in = 0; in < N; in++) {
|
||||
for (int64_t iod = 0; iod < OD; iod++) {
|
||||
for (int64_t ioh = 0; ioh < OH; ioh++) {
|
||||
for (int64_t iow = 0; iow < OW; iow++) {
|
||||
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||||
|
||||
// micro kernel
|
||||
float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
|
||||
const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
|
||||
|
||||
for (int64_t ikd = 0; ikd < KD; ikd++) {
|
||||
for (int64_t ikh = 0; ikh < KH; ikh++) {
|
||||
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||||
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||||
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||||
const int64_t iid = iod*s2 + ikd*d2 - p2;
|
||||
|
||||
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_compute_forward_im2col_3d(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_im2col_3d_f16(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_im2col_3d_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
|
||||
void * a, void * b, float * c) {
|
||||
const ggml_type_traits * traits = ggml_get_type_traits(type);
|
||||
@@ -8014,6 +8217,15 @@ static void ggml_compute_forward_pad_f32(
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
float * dst_ptr = (float *) dst->data;
|
||||
const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
|
||||
const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
|
||||
const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
|
||||
const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
|
||||
const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
|
||||
const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
|
||||
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
|
||||
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
|
||||
|
||||
|
||||
// TODO: optimize
|
||||
|
||||
@@ -8022,10 +8234,12 @@ static void ggml_compute_forward_pad_f32(
|
||||
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
|
||||
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
if ((i0 >= lp0 && i0 < ne0 - rp0) \
|
||||
&& (i1 >= lp1 && i1 < ne1 - rp1) \
|
||||
&& (i2 >= lp2 && i2 < ne2 - rp2) \
|
||||
&& (i3 >= lp3 && i3 < ne3 - rp3)) {
|
||||
const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
|
||||
const float * src_ptr = (const float *)((char *) src0->data + src_idx);
|
||||
dst_ptr[dst_idx] = *src_ptr;
|
||||
} else {
|
||||
dst_ptr[dst_idx] = 0;
|
||||
|
||||
@@ -69,6 +69,7 @@ void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struc
|
||||
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
Reference in New Issue
Block a user