mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-13 10:57:15 +00:00
CUDA: add a fused top-K MoE kernel (#16130)
* CUDA: add a fused top-K MoE kernel This kernel does the following: 1. softmax over the logits per token [n_experts, n_tokens] 2. argmax reduce over the top-k (n_experts_used) logits 3. write weights + ids to global memory It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models * Refactor into ggml_cuda_should_use_topk_moe * Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before * Review: format + micro-optimizations * Fix bug: fix tie breakers * Add optional norm + clean-up code * Use smem for final write * Add bounds check * Use better memory pattern for writeback
This commit is contained in:
@@ -45,6 +45,7 @@
|
||||
#include "ggml-cuda/sumrows.cuh"
|
||||
#include "ggml-cuda/mean.cuh"
|
||||
#include "ggml-cuda/tsembd.cuh"
|
||||
#include "ggml-cuda/topk-moe.cuh"
|
||||
#include "ggml-cuda/unary.cuh"
|
||||
#include "ggml-cuda/upscale.cuh"
|
||||
#include "ggml-cuda/wkv.cuh"
|
||||
@@ -2825,6 +2826,44 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
GGML_ASSERT(unary_ops.size() == num_unary);
|
||||
#endif
|
||||
|
||||
//TODO: remove special case once ggml_can_fuse can handle empty nodes
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops = ggml_cuda_topk_moe_ops(false);
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops_with_norm = ggml_cuda_topk_moe_ops(true);
|
||||
|
||||
if (ops.size() == topk_moe_ops_with_norm.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops_with_norm.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops_with_norm.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops_with_norm.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops_with_norm.begin()[i]) return false;
|
||||
}
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+8];
|
||||
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == topk_moe_ops.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops.begin()[i]) return false;
|
||||
}
|
||||
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+4];
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
@@ -2915,6 +2954,22 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
if (!disable_fusion) {
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ true), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+8];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ true);
|
||||
i += 8;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ false), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+4];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ false);
|
||||
i += 4;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_ADD) {
|
||||
int n_fuse = 0;
|
||||
ggml_op ops[8];
|
||||
|
||||
Reference in New Issue
Block a user