mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
CUDA: add a fused top-K MoE kernel (#16130)
* CUDA: add a fused top-K MoE kernel This kernel does the following: 1. softmax over the logits per token [n_experts, n_tokens] 2. argmax reduce over the top-k (n_experts_used) logits 3. write weights + ids to global memory It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models * Refactor into ggml_cuda_should_use_topk_moe * Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before * Review: format + micro-optimizations * Fix bug: fix tie breakers * Add optional norm + clean-up code * Use smem for final write * Add bounds check * Use better memory pattern for writeback
This commit is contained in:
@@ -45,6 +45,7 @@
|
||||
#include "ggml-cuda/sumrows.cuh"
|
||||
#include "ggml-cuda/mean.cuh"
|
||||
#include "ggml-cuda/tsembd.cuh"
|
||||
#include "ggml-cuda/topk-moe.cuh"
|
||||
#include "ggml-cuda/unary.cuh"
|
||||
#include "ggml-cuda/upscale.cuh"
|
||||
#include "ggml-cuda/wkv.cuh"
|
||||
@@ -2825,6 +2826,44 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
GGML_ASSERT(unary_ops.size() == num_unary);
|
||||
#endif
|
||||
|
||||
//TODO: remove special case once ggml_can_fuse can handle empty nodes
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops = ggml_cuda_topk_moe_ops(false);
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops_with_norm = ggml_cuda_topk_moe_ops(true);
|
||||
|
||||
if (ops.size() == topk_moe_ops_with_norm.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops_with_norm.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops_with_norm.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops_with_norm.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops_with_norm.begin()[i]) return false;
|
||||
}
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+8];
|
||||
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == topk_moe_ops.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops.begin()[i]) return false;
|
||||
}
|
||||
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+4];
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
@@ -2915,6 +2954,22 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
if (!disable_fusion) {
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ true), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+8];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ true);
|
||||
i += 8;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ false), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+4];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ false);
|
||||
i += 4;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_ADD) {
|
||||
int n_fuse = 0;
|
||||
ggml_op ops[8];
|
||||
|
||||
259
ggml/src/ggml-cuda/topk-moe.cu
Normal file
259
ggml/src/ggml-cuda/topk-moe.cu
Normal file
@@ -0,0 +1,259 @@
|
||||
#include "ggml-cuda/common.cuh"
|
||||
#include "ggml.h"
|
||||
#include "topk-moe.cuh"
|
||||
|
||||
#include <initializer_list>
|
||||
|
||||
/*
|
||||
This kernel does the following:
|
||||
1. softmax over the logits per token [n_experts, n_tokens]
|
||||
2. argmax reduce over the top-k (n_experts_used) logits
|
||||
3. write weights + ids to global memory
|
||||
4. optionally normalize the weights
|
||||
|
||||
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
|
||||
*/
|
||||
template <size_t n_experts, bool with_norm>
|
||||
__launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits,
|
||||
float * weights,
|
||||
int32_t * ids,
|
||||
const int n_rows,
|
||||
const int n_expert_used) {
|
||||
const int row = blockIdx.x * blockDim.y + threadIdx.y;
|
||||
if (row >= n_rows) {
|
||||
return;
|
||||
}
|
||||
|
||||
logits += n_experts * row;
|
||||
weights += n_expert_used * row;
|
||||
ids += n_experts * row;
|
||||
|
||||
constexpr int experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
|
||||
|
||||
float logits_r[experts_per_thread];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_experts; i += WARP_SIZE) {
|
||||
const int expert = i + threadIdx.x;
|
||||
logits_r[i / WARP_SIZE] = n_experts % WARP_SIZE == 0 || expert < n_experts ? logits[expert] : -INFINITY;
|
||||
}
|
||||
|
||||
float max_val = logits_r[0];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i < experts_per_thread; i++) {
|
||||
const float val = logits_r[i];
|
||||
max_val = max(val, max_val);
|
||||
}
|
||||
|
||||
max_val = warp_reduce_max(max_val);
|
||||
|
||||
float wt[experts_per_thread];
|
||||
float tmp = 0.f;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
const float val = logits_r[i];
|
||||
wt[i] = expf(val - max_val);
|
||||
tmp += wt[i];
|
||||
}
|
||||
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
const float inv_sum = 1.0f / tmp;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
wt[i] = wt[i] * inv_sum;
|
||||
}
|
||||
|
||||
//at this point, each thread holds a portion of softmax,
|
||||
//we do the argmax reduce over n_expert_used, each time marking
|
||||
//the expert weight as -inf to exclude from the next iteration
|
||||
|
||||
float wt_sum = 0.f;
|
||||
|
||||
extern __shared__ float data_topk_shared[];
|
||||
float * wt_shared_ptr = data_topk_shared + threadIdx.y * n_expert_used;
|
||||
|
||||
for (int k = 0; k < n_expert_used; k++) {
|
||||
float max_val = wt[0];
|
||||
int max_expert = threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i < experts_per_thread; i++) {
|
||||
const int expert = threadIdx.x + i * WARP_SIZE;
|
||||
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && wt[i] > max_val) {
|
||||
max_val = wt[i];
|
||||
max_expert = expert;
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, max_val, mask, WARP_SIZE);
|
||||
const int expert = __shfl_xor_sync(0xFFFFFFFF, max_expert, mask, WARP_SIZE);
|
||||
if (val > max_val || (val == max_val && expert < max_expert)) {
|
||||
max_val = val;
|
||||
max_expert = expert;
|
||||
}
|
||||
}
|
||||
|
||||
if ((max_expert & (WARP_SIZE - 1)) == threadIdx.x) {
|
||||
wt[max_expert / WARP_SIZE] = -INFINITY;
|
||||
|
||||
wt_shared_ptr[k] = max_val;
|
||||
ids[k] = max_expert;
|
||||
if constexpr (with_norm) {
|
||||
wt_sum += max_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (with_norm) {
|
||||
wt_sum = warp_reduce_sum(wt_sum);
|
||||
const float inv_sum = 1.0f / wt_sum;
|
||||
|
||||
for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) {
|
||||
wt_shared_ptr[i] = wt_shared_ptr[i] * inv_sum;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) {
|
||||
weights[i] = wt_shared_ptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <bool with_norm>
|
||||
static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx,
|
||||
const float * logits,
|
||||
float * weights,
|
||||
int32_t * ids,
|
||||
const int n_rows,
|
||||
const int n_expert,
|
||||
const int n_expert_used) {
|
||||
const int rows_per_block = 4;
|
||||
dim3 grid_dims((n_rows + rows_per_block - 1) / rows_per_block, 1, 1);
|
||||
dim3 block_dims(WARP_SIZE, rows_per_block, 1);
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int nbytes_shared = n_expert_used * rows_per_block * sizeof(float);
|
||||
|
||||
switch (n_expert) {
|
||||
case 1:
|
||||
topk_moe_cuda<1, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 2:
|
||||
topk_moe_cuda<2, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 4:
|
||||
topk_moe_cuda<4, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 8:
|
||||
topk_moe_cuda<8, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 16:
|
||||
topk_moe_cuda<16, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 32:
|
||||
topk_moe_cuda<32, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 64:
|
||||
topk_moe_cuda<64, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 128:
|
||||
topk_moe_cuda<128, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 256:
|
||||
topk_moe_cuda<256, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
case 512:
|
||||
topk_moe_cuda<512, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * logits,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * ids,
|
||||
const bool with_norm) {
|
||||
GGML_ASSERT(logits->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(weights->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
|
||||
const int n_experts = logits->ne[0];
|
||||
const int n_rows = logits->ne[1];
|
||||
|
||||
const float * logits_d = (const float *) logits->src[0]->data;
|
||||
float * weights_d = (float *) weights->data;
|
||||
int32_t * ids_d = (int32_t *) ids->data;
|
||||
|
||||
GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int n_expert_used = weights->ne[1];
|
||||
|
||||
if (with_norm) {
|
||||
launch_topk_moe_cuda<true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
|
||||
} else {
|
||||
launch_topk_moe_cuda<false>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights) {
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (const float *) softmax->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (const float *) softmax->op_params + 1, sizeof(float));
|
||||
|
||||
if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (scale != 1.0f || max_bias != 0.0f) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// don't fuse when masks or sinks are present
|
||||
if (softmax->src[1] || softmax->src[2]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const int n_expert = softmax->ne[0];
|
||||
// n_expert must be a power of 2
|
||||
if ((n_expert & (n_expert - 1)) != 0 || n_expert > 512) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool norm) {
|
||||
static std::initializer_list<enum ggml_op> norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
||||
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
||||
GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE };
|
||||
|
||||
static std::initializer_list<enum ggml_op> no_norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
||||
GGML_OP_VIEW, GGML_OP_GET_ROWS };
|
||||
|
||||
if (norm) {
|
||||
return norm_ops;
|
||||
}
|
||||
return no_norm_ops;
|
||||
}
|
||||
14
ggml/src/ggml-cuda/topk-moe.cuh
Normal file
14
ggml/src/ggml-cuda/topk-moe.cuh
Normal file
@@ -0,0 +1,14 @@
|
||||
#include "common.cuh"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <initializer_list>
|
||||
|
||||
void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * logits,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * top_k,
|
||||
const bool with_norm);
|
||||
|
||||
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights);
|
||||
|
||||
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool with_norm);
|
||||
Reference in New Issue
Block a user