mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	convert : write tensors in parallel
This commit is contained in:
		@@ -73,7 +73,7 @@ class Model:
 | 
			
		||||
                 use_temp_file: bool = False, eager: bool = False,
 | 
			
		||||
                 metadata_override: Path | None = None, model_name: str | None = None,
 | 
			
		||||
                 split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
 | 
			
		||||
                 small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
 | 
			
		||||
                 small_first_shard: bool = False, hparams: dict[str, Any] | None = None, thread_count: int = 2):
 | 
			
		||||
        if type(self) is Model:
 | 
			
		||||
            raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
 | 
			
		||||
 | 
			
		||||
@@ -109,7 +109,8 @@ class Model:
 | 
			
		||||
 | 
			
		||||
        # Configure GGUF Writer
 | 
			
		||||
        self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
 | 
			
		||||
                                           split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
 | 
			
		||||
                                           split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard,
 | 
			
		||||
                                           thread_count=thread_count)
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def __init_subclass__(cls):
 | 
			
		||||
@@ -5470,6 +5471,10 @@ def parse_args() -> argparse.Namespace:
 | 
			
		||||
        "--print-supported-models", action="store_true",
 | 
			
		||||
        help="Print the supported models"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "-t", "--threads", type=int, default=2,
 | 
			
		||||
        help="Number of threads to use when writing the tensors. Make sure you have enough RAM for at least THREADS of the biggest tensors in the model when setting this.",
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    if not args.print_supported_models and args.model is None:
 | 
			
		||||
@@ -5554,7 +5559,7 @@ def main() -> None:
 | 
			
		||||
                                     metadata_override=args.metadata, model_name=args.model_name,
 | 
			
		||||
                                     split_max_tensors=args.split_max_tensors,
 | 
			
		||||
                                     split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
 | 
			
		||||
                                     small_first_shard=args.no_tensor_first_split)
 | 
			
		||||
                                     small_first_shard=args.no_tensor_first_split, thread_count=args.threads)
 | 
			
		||||
 | 
			
		||||
        if args.vocab_only:
 | 
			
		||||
            logger.info("Exporting model vocab...")
 | 
			
		||||
 
 | 
			
		||||
@@ -5,10 +5,12 @@ import os
 | 
			
		||||
import shutil
 | 
			
		||||
import struct
 | 
			
		||||
import tempfile
 | 
			
		||||
import threading
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
from enum import Enum, auto
 | 
			
		||||
from math import prod
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
from queue import Empty, Queue
 | 
			
		||||
from io import BufferedWriter
 | 
			
		||||
from typing import IO, Any, Sequence, Mapping
 | 
			
		||||
from string import ascii_letters, digits
 | 
			
		||||
@@ -60,8 +62,31 @@ class WriterState(Enum):
 | 
			
		||||
    WEIGHTS = auto()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class TensorWriteInfo:
 | 
			
		||||
    filename: Path
 | 
			
		||||
    offset: int
 | 
			
		||||
    post_pad: int
 | 
			
		||||
    tensor: np.ndarray
 | 
			
		||||
    bar: Any | None
 | 
			
		||||
 | 
			
		||||
    def write_chunk(self, open_files: dict[Path, BufferedWriter]):
 | 
			
		||||
        if self.filename not in open_files:
 | 
			
		||||
            open_files[self.filename] = open(self.filename, "r+b")
 | 
			
		||||
        f = open_files[self.filename]
 | 
			
		||||
 | 
			
		||||
        f.seek(self.offset)
 | 
			
		||||
        f.write(self.tensor.data)
 | 
			
		||||
        if self.post_pad > 0:
 | 
			
		||||
            f.write(bytes([0] * self.post_pad))
 | 
			
		||||
        if self.bar is not None:
 | 
			
		||||
            self.bar.update(self.tensor.nbytes)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GGUFWriter:
 | 
			
		||||
    fout: list[BufferedWriter] | None
 | 
			
		||||
    filenames: list[Path] | None
 | 
			
		||||
    thread_count: int
 | 
			
		||||
    path: Path | None
 | 
			
		||||
    temp_file: tempfile.SpooledTemporaryFile[bytes] | None
 | 
			
		||||
    tensors: list[dict[str, TensorInfo]]
 | 
			
		||||
@@ -83,7 +108,8 @@ class GGUFWriter:
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
 | 
			
		||||
        split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
 | 
			
		||||
        split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False,
 | 
			
		||||
        thread_count: int = 2,
 | 
			
		||||
    ):
 | 
			
		||||
        self.fout = None
 | 
			
		||||
        self.path = Path(path) if path else None
 | 
			
		||||
@@ -98,6 +124,7 @@ class GGUFWriter:
 | 
			
		||||
        self.split_max_size = split_max_size
 | 
			
		||||
        self.dry_run = dry_run
 | 
			
		||||
        self.small_first_shard = small_first_shard
 | 
			
		||||
        self.thread_count = thread_count
 | 
			
		||||
        logger.info("gguf: This GGUF file is for {0} Endian only".format(
 | 
			
		||||
            "Big" if self.endianess == GGUFEndian.BIG else "Little",
 | 
			
		||||
        ))
 | 
			
		||||
@@ -173,6 +200,7 @@ class GGUFWriter:
 | 
			
		||||
 | 
			
		||||
        if self.path is not None:
 | 
			
		||||
            filenames = self.print_plan()
 | 
			
		||||
            self.filenames = filenames
 | 
			
		||||
            self.fout = [open(filename, "wb") for filename in filenames]
 | 
			
		||||
            self.state = WriterState.EMPTY
 | 
			
		||||
 | 
			
		||||
@@ -424,40 +452,78 @@ class GGUFWriter:
 | 
			
		||||
        self.write_ti_data_to_file()
 | 
			
		||||
 | 
			
		||||
        assert self.fout is not None
 | 
			
		||||
        assert self.filenames is not None
 | 
			
		||||
 | 
			
		||||
        for fout in self.fout:
 | 
			
		||||
            self.write_padding(fout, fout.tell())
 | 
			
		||||
 | 
			
		||||
        if self.temp_file is None:
 | 
			
		||||
            shard_bar = None
 | 
			
		||||
            bar = None
 | 
			
		||||
            # Distribute writing the tensors between multiple threads
 | 
			
		||||
            tensor_queue: Queue[TensorWriteInfo] = Queue()
 | 
			
		||||
 | 
			
		||||
            offsets: list[int] = [fout.tell() for fout in self.fout]
 | 
			
		||||
 | 
			
		||||
            if progress:
 | 
			
		||||
                # TODO: add back the shard bar to show which shard is being written when single-threaded
 | 
			
		||||
                from tqdm import tqdm
 | 
			
		||||
 | 
			
		||||
                total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
 | 
			
		||||
 | 
			
		||||
                if len(self.fout) > 1:
 | 
			
		||||
                    shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
 | 
			
		||||
                bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
 | 
			
		||||
 | 
			
		||||
            for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
 | 
			
		||||
                if shard_bar is not None:
 | 
			
		||||
                    shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
 | 
			
		||||
                    total = sum(ti.nbytes for ti in tensors.values())
 | 
			
		||||
                    shard_bar.reset(total=(total if total > 0 else None))
 | 
			
		||||
            for i, (filename, tensors) in enumerate(zip(self.filenames, self.tensors)):
 | 
			
		||||
                offset = offsets[i]
 | 
			
		||||
 | 
			
		||||
                # relying on the fact that Python dicts preserve insertion order (since 3.7)
 | 
			
		||||
                for ti in tensors.values():
 | 
			
		||||
                    assert ti.tensor is not None  # can only iterate once over the tensors
 | 
			
		||||
                    assert ti.tensor.nbytes == ti.nbytes
 | 
			
		||||
                    ti.tensor.tofile(fout)
 | 
			
		||||
                    if shard_bar is not None:
 | 
			
		||||
                        shard_bar.update(ti.nbytes)
 | 
			
		||||
                    if bar is not None:
 | 
			
		||||
                        bar.update(ti.nbytes)
 | 
			
		||||
                    self.write_padding(fout, ti.nbytes)
 | 
			
		||||
                    ti.tensor = None
 | 
			
		||||
                    start_offset = offset
 | 
			
		||||
                    nbytes = ti.tensor.nbytes
 | 
			
		||||
                    offset = self.ggml_pad(start_offset + nbytes, self.data_alignment)
 | 
			
		||||
                    padding = offset - (start_offset + nbytes)
 | 
			
		||||
                    tensor_queue.put(
 | 
			
		||||
                        TensorWriteInfo(
 | 
			
		||||
                            filename=filename,
 | 
			
		||||
                            offset=start_offset,
 | 
			
		||||
                            post_pad=padding,
 | 
			
		||||
                            tensor=ti.tensor,
 | 
			
		||||
                            bar=bar,
 | 
			
		||||
                        )
 | 
			
		||||
                    )
 | 
			
		||||
                    ti.tensor = None  # avoid keeping a reference to written tensors
 | 
			
		||||
 | 
			
		||||
            # Write tensors in parallel
 | 
			
		||||
            # TODO: total tensor size limit for the running threads
 | 
			
		||||
            def write_tensors_from_thread(queue: Queue[TensorWriteInfo]):
 | 
			
		||||
                open_files: dict[Path, BufferedWriter] = {}
 | 
			
		||||
                try:
 | 
			
		||||
                    while t := queue.get_nowait():
 | 
			
		||||
                        t.write_chunk(open_files)
 | 
			
		||||
                        del t
 | 
			
		||||
                        queue.task_done()
 | 
			
		||||
                except Empty:
 | 
			
		||||
                    pass
 | 
			
		||||
 | 
			
		||||
                for f in open_files.values():
 | 
			
		||||
                    f.close()
 | 
			
		||||
 | 
			
		||||
            threads = [
 | 
			
		||||
                threading.Thread(target=write_tensors_from_thread, args=(tensor_queue,))
 | 
			
		||||
                for _ in range(self.thread_count)
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
            for t in threads:
 | 
			
		||||
                t.start()
 | 
			
		||||
 | 
			
		||||
            # NOTE: thread joining has weird interactions with KeyboardInterrupt,
 | 
			
		||||
            #       so waiting for the queue to be "done" first.
 | 
			
		||||
            tensor_queue.join()
 | 
			
		||||
 | 
			
		||||
            for t in threads:
 | 
			
		||||
                t.join()
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            self.temp_file.seek(0)
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -220,4 +220,9 @@ class LazyNumpyTensor(LazyBase):
 | 
			
		||||
        eager = LazyNumpyTensor.to_eager(self)
 | 
			
		||||
        return eager.tofile(*args, **kwargs)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def data(self):
 | 
			
		||||
        eager = LazyNumpyTensor.to_eager(self)
 | 
			
		||||
        return eager.data
 | 
			
		||||
 | 
			
		||||
    # TODO: __array_function__
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user