mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	[Model] Add support for xverse (#6301)
* Support xverse model convert to gguf format. * 1. Convert xverse models to gguf; 2. Add LLM_ARCH_XVERSE inference in llama.cpp; 3. Add xverse item in Supported models in README.md; * * gguf-py: remove redundant logs * llama: remove the init_mapping_prefetch custom parameter * llama.cpp: Include the changes from #6122 to exclude the unused outputs of the last layers. * - Fix format issues - Remove duplicate set kqv_out to llm_build_kv * Update llama.cpp --------- Co-authored-by: willhe <willhe@xverse.cn> Co-authored-by: willhe <hexin@xverse.cn>
This commit is contained in:
		
							
								
								
									
										165
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										165
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -218,6 +218,7 @@ enum llm_arch { | ||||
|     LLM_ARCH_GEMMA, | ||||
|     LLM_ARCH_STARCODER2, | ||||
|     LLM_ARCH_MAMBA, | ||||
|     LLM_ARCH_XVERSE, | ||||
|     LLM_ARCH_COMMAND_R, | ||||
|     LLM_ARCH_UNKNOWN, | ||||
| }; | ||||
| @@ -249,6 +250,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { | ||||
|     { LLM_ARCH_GEMMA,           "gemma"      }, | ||||
|     { LLM_ARCH_STARCODER2,      "starcoder2" }, | ||||
|     { LLM_ARCH_MAMBA,           "mamba"      }, | ||||
|     { LLM_ARCH_XVERSE,          "xverse"     }, | ||||
|     { LLM_ARCH_COMMAND_R,       "command-r"  }, | ||||
|     { LLM_ARCH_UNKNOWN,         "(unknown)"  }, | ||||
| }; | ||||
| @@ -878,6 +880,25 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA | ||||
|             { LLM_TENSOR_SSM_OUT,         "blk.%d.ssm_out" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_XVERSE, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,          "output" }, | ||||
|             { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" }, | ||||
|             { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" }, | ||||
|             { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" }, | ||||
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" }, | ||||
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" }, | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_COMMAND_R, | ||||
|         { | ||||
| @@ -3847,6 +3868,16 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_XVERSE: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 32: model.type = e_model::MODEL_7B; break; | ||||
|                     case 40: model.type = e_model::MODEL_13B; break; | ||||
|                     case 80: model.type = e_model::MODEL_65B; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_COMMAND_R: | ||||
|             { | ||||
|                 ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); | ||||
| @@ -5200,6 +5231,28 @@ static bool llm_load_tensors( | ||||
|                         layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_XVERSE: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
|                     { | ||||
|                         model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); | ||||
|                         model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}); | ||||
|                     } | ||||
|                     for (int i = 0; i < n_layer; ++i) { | ||||
|                         ggml_context * ctx_layer = ctx_for_layer(i); | ||||
|                         ggml_context * ctx_split = ctx_for_layer_split(i); | ||||
|                         auto & layer = model.layers[i]; | ||||
|                         layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); | ||||
|                         layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd}); | ||||
|                         layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|                         layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}); | ||||
|                         layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); | ||||
|                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); | ||||
|                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}); | ||||
|                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}); | ||||
|                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_COMMAND_R: | ||||
|                 { | ||||
|                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); | ||||
| @@ -5238,7 +5291,7 @@ static bool llm_load_tensors( | ||||
|  | ||||
|     ml.done_getting_tensors(); | ||||
|  | ||||
|     ml.init_mappings(true, &model.mlock_mmaps); | ||||
|     ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr); | ||||
|     model.mappings.reserve(ml.mappings.size()); | ||||
|  | ||||
|     // create the backend buffers | ||||
| @@ -6411,6 +6464,111 @@ struct llm_build_context { | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_xverse() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
|         const int64_t n_embd_head = hparams.n_embd_head_v; | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); | ||||
|         GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|         struct ggml_tensor * cur; | ||||
|         struct ggml_tensor * inpL; | ||||
|  | ||||
|         inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); | ||||
|  | ||||
|         // inp_pos - contains the positions | ||||
|         struct ggml_tensor * inp_pos = build_inp_pos(); | ||||
|  | ||||
|         // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|         struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); | ||||
|  | ||||
|         // positions of the tokens in the KV cache | ||||
|         struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); | ||||
|  | ||||
|         for (int il = 0; il < n_layer; ++il) { | ||||
|             struct ggml_tensor * inpSA = inpL; | ||||
|  | ||||
|             cur = llm_build_norm(ctx0, inpL, hparams, | ||||
|                     model.layers[il].attn_norm, NULL, | ||||
|                     LLM_NORM_RMS, cb, il); | ||||
|             cb(cur, "attn_norm", il); | ||||
|  | ||||
|             // self-attention | ||||
|             { | ||||
|                 struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|  | ||||
|                 struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | ||||
|                 cb(Vcur, "Vcur", il); | ||||
|  | ||||
|                 Qcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, | ||||
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Qcur, "Qcur", il); | ||||
|  | ||||
|                 Kcur = ggml_rope_custom( | ||||
|                     ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, | ||||
|                     n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, | ||||
|                     ext_factor, attn_factor, beta_fast, beta_slow | ||||
|                 ); | ||||
|                 cb(Kcur, "Kcur", il); | ||||
|                 cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, | ||||
|                         model.layers[il].wo, NULL, | ||||
|                         Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); | ||||
|             } | ||||
|  | ||||
|             if (il == n_layer - 1) { | ||||
|                 // skip computing output for unused tokens | ||||
|                 struct ggml_tensor * inp_out_ids = build_inp_out_ids(); | ||||
|                 cur   = ggml_get_rows(ctx0,      cur, inp_out_ids); | ||||
|                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); | ||||
|             cb(ffn_inp, "ffn_inp", il); | ||||
|  | ||||
|             // feed-forward network | ||||
|             { | ||||
|                 cur = llm_build_norm(ctx0, ffn_inp, hparams, | ||||
|                         model.layers[il].ffn_norm, NULL, | ||||
|                         LLM_NORM_RMS, cb, il); | ||||
|                 cb(cur, "ffn_norm", il); | ||||
|  | ||||
|                 cur = llm_build_ffn(ctx0, cur, | ||||
|                         model.layers[il].ffn_up,   NULL, | ||||
|                         model.layers[il].ffn_gate, NULL, | ||||
|                         model.layers[il].ffn_down, NULL, | ||||
|                         NULL, | ||||
|                         LLM_FFN_SILU, LLM_FFN_PAR, cb, il); | ||||
|                 cb(cur, "ffn_out", il); | ||||
|             } | ||||
|  | ||||
|             cur = ggml_add(ctx0, cur, ffn_inp); | ||||
|             cb(cur, "l_out", il); | ||||
|  | ||||
|             // input for next layer | ||||
|             inpL = cur; | ||||
|         } | ||||
|  | ||||
|         cur = inpL; | ||||
|  | ||||
|         cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); | ||||
|         cb(cur, "result_norm", -1); | ||||
|  | ||||
|         // lm_head | ||||
|         cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|         cb(cur, "result_output", -1); | ||||
|  | ||||
|         ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|         return gf; | ||||
|     } | ||||
|  | ||||
|     struct ggml_cgraph * build_falcon() { | ||||
|         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); | ||||
|  | ||||
| @@ -9389,6 +9547,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm.build_mamba(); | ||||
|             } break; | ||||
|         case LLM_ARCH_XVERSE: | ||||
|             { | ||||
|                 result = llm.build_xverse(); | ||||
|             } break; | ||||
|         case LLM_ARCH_COMMAND_R: | ||||
|             { | ||||
|                 result = llm.build_command_r(); | ||||
| @@ -14188,6 +14350,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { | ||||
|         case LLM_ARCH_ORION: | ||||
|         case LLM_ARCH_INTERNLM2: | ||||
|         case LLM_ARCH_MINICPM: | ||||
|         case LLM_ARCH_XVERSE: | ||||
|         case LLM_ARCH_COMMAND_R: | ||||
|             return LLAMA_ROPE_TYPE_NORM; | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 hxer7963
					hxer7963