mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	llm : add bloom models (#3553)
* feat: Support bloom models * fix(bloom): fix model size --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
		 Xingchen Song(宋星辰)
					Xingchen Song(宋星辰)
				
			
				
					committed by
					
						 GitHub
						GitHub
					
				
			
			
				
	
			
			
			 GitHub
						GitHub
					
				
			
						parent
						
							0aa6595ae0
						
					
				
				
					commit
					02d2875def
				
			
							
								
								
									
										383
									
								
								llama.cpp
									
									
									
									
									
								
							
							
						
						
									
										383
									
								
								llama.cpp
									
									
									
									
									
								
							| @@ -188,6 +188,7 @@ enum llm_arch { | ||||
|     LLM_ARCH_STARCODER, | ||||
|     LLM_ARCH_PERSIMMON, | ||||
|     LLM_ARCH_REFACT, | ||||
|     LLM_ARCH_BLOOM, | ||||
|     LLM_ARCH_UNKNOWN, | ||||
| }; | ||||
|  | ||||
| @@ -201,7 +202,8 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = { | ||||
|     { LLM_ARCH_BAICHUAN,        "baichuan"  }, | ||||
|     { LLM_ARCH_STARCODER,       "starcoder" }, | ||||
|     { LLM_ARCH_PERSIMMON,       "persimmon" }, | ||||
|     { LLM_ARCH_REFACT,          "refact" }, | ||||
|     { LLM_ARCH_REFACT,          "refact"    }, | ||||
|     { LLM_ARCH_BLOOM,           "bloom"     }, | ||||
| }; | ||||
|  | ||||
| enum llm_kv { | ||||
| @@ -304,6 +306,7 @@ struct LLM_KV { | ||||
|  | ||||
| enum llm_tensor { | ||||
|     LLM_TENSOR_TOKEN_EMBD, | ||||
|     LLM_TENSOR_TOKEN_EMBD_NORM, | ||||
|     LLM_TENSOR_POS_EMBD, | ||||
|     LLM_TENSOR_OUTPUT, | ||||
|     LLM_TENSOR_OUTPUT_NORM, | ||||
| @@ -466,6 +469,21 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_BLOOM, | ||||
|         { | ||||
|             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" }, | ||||
|             { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" }, | ||||
|             { LLM_TENSOR_OUTPUT,          "output" }, | ||||
|             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" }, | ||||
|             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" }, | ||||
|             { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" }, | ||||
|             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" }, | ||||
|             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" }, | ||||
|             { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" }, | ||||
|         }, | ||||
|     }, | ||||
|     { | ||||
|         LLM_ARCH_UNKNOWN, | ||||
|         { | ||||
| @@ -1207,6 +1225,8 @@ struct llama_model { | ||||
|  | ||||
|     struct ggml_tensor * tok_embeddings; | ||||
|     struct ggml_tensor * pos_embeddings; | ||||
|     struct ggml_tensor * tok_norm; | ||||
|     struct ggml_tensor * tok_norm_b; | ||||
|  | ||||
|     struct ggml_tensor * output_norm; | ||||
|     struct ggml_tensor * output_norm_b; | ||||
| @@ -2056,13 +2076,13 @@ static void llm_load_hparams( | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_PERSIMMON: | ||||
|         { | ||||
|             GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); | ||||
|             switch (hparams.n_layer) { | ||||
|                 case 36: model.type = e_model::MODEL_8B; break; | ||||
|                 default: model.type = e_model::MODEL_UNKNOWN; | ||||
|             } | ||||
|         } break; | ||||
|             { | ||||
|                 GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 36: model.type = e_model::MODEL_8B; break; | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_REFACT: | ||||
|             { | ||||
|                 GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); | ||||
| @@ -2071,6 +2091,19 @@ static void llm_load_hparams( | ||||
|                     default: model.type = e_model::MODEL_UNKNOWN; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_BLOOM: | ||||
|             { | ||||
|                 GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); | ||||
|  | ||||
|                 switch (hparams.n_layer) { | ||||
|                     case 24: model.type = e_model::MODEL_1B; break; | ||||
|                     case 30: | ||||
|                         switch (hparams.n_embd) { | ||||
|                             case 2560: model.type = e_model::MODEL_3B; break; | ||||
|                             case 4096: model.type = e_model::MODEL_7B; break; | ||||
|                         } break; | ||||
|                 } | ||||
|             } break; | ||||
|         case LLM_ARCH_MPT: | ||||
|             { | ||||
|                 hparams.f_clamp_kqv = 0.0f; | ||||
| @@ -2676,6 +2709,88 @@ static void llm_load_tensors( | ||||
|                         layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i),   {64}, backend); | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_BLOOM: | ||||
|                 { | ||||
|                     // TODO: CPU-only for now | ||||
|  | ||||
|                     model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); | ||||
|                     model.tok_norm       = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd},          GGML_BACKEND_CPU); | ||||
|                     model.tok_norm_b     = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd},          GGML_BACKEND_CPU); | ||||
|  | ||||
|                     // output | ||||
|                     { | ||||
|                         ggml_backend_type backend_norm; | ||||
|                         ggml_backend_type backend_output; | ||||
|  | ||||
|                         if (n_gpu_layers > int(n_layer)) { | ||||
|                             // norm is not performance relevant on its own but keeping it in VRAM reduces data copying | ||||
|                             // on Windows however this is detrimental unless everything is on the GPU | ||||
| #ifndef _WIN32 | ||||
|                             backend_norm = LLAMA_BACKEND_OFFLOAD; | ||||
| #else | ||||
|                             backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | ||||
| #endif // _WIN32 | ||||
|  | ||||
|                             backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | ||||
|                         } else { | ||||
|                             backend_norm   = GGML_BACKEND_CPU; | ||||
|                             backend_output = GGML_BACKEND_CPU; | ||||
|                         } | ||||
|  | ||||
|                         model.output_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd},          backend_norm); | ||||
|                         model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd},          backend_norm); | ||||
|                         model.output        = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, backend_output); | ||||
|  | ||||
|                         if (backend_norm == GGML_BACKEND_GPU) { | ||||
|                             vram_weights += ggml_nbytes(model.output_norm); | ||||
|                             vram_weights += ggml_nbytes(model.output_norm_b); | ||||
|                         } | ||||
|                         if (backend_output == GGML_BACKEND_GPU_SPLIT) { | ||||
|                             vram_weights += ggml_nbytes(model.output); | ||||
|                         } | ||||
|                     } | ||||
|  | ||||
|                     const uint32_t n_ff = hparams.n_ff; | ||||
|  | ||||
|                     const int i_gpu_start = n_layer - n_gpu_layers; | ||||
|  | ||||
|                     model.layers.resize(n_layer); | ||||
|  | ||||
|                     for (uint32_t i = 0; i < n_layer; ++i) { | ||||
|                         const ggml_backend_type backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | ||||
|                         const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | ||||
|  | ||||
|                         auto & layer = model.layers[i]; | ||||
|  | ||||
|                         layer.attn_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, backend); | ||||
|                         layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd}, backend); | ||||
|  | ||||
|                         layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); | ||||
|                         layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa},         backend_split); | ||||
|  | ||||
|                         layer.wo   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd},                backend_split); | ||||
|                         layer.bo   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd},                        backend_split); | ||||
|  | ||||
|                         layer.ffn_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); | ||||
|                         layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, backend); | ||||
|  | ||||
|                         layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); | ||||
|                         layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd},       backend_split); | ||||
|  | ||||
|                         layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, backend_split); | ||||
|                         layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff},           backend_split); | ||||
|  | ||||
|                         if (backend == GGML_BACKEND_GPU) { | ||||
|                             vram_weights += | ||||
|                                 ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + | ||||
|                                 ggml_nbytes(layer.wqkv)      + ggml_nbytes(layer.bqkv)        + | ||||
|                                 ggml_nbytes(layer.wo)        + ggml_nbytes(layer.bo)          + | ||||
|                                 ggml_nbytes(layer.ffn_norm)  + ggml_nbytes(layer.ffn_norm_b)  + | ||||
|                                 ggml_nbytes(layer.w3)        + ggml_nbytes(layer.b3)          + | ||||
|                                 ggml_nbytes(layer.w2)        + ggml_nbytes(layer.b2); | ||||
|                         } | ||||
|                     } | ||||
|                 } break; | ||||
|             case LLM_ARCH_MPT: | ||||
|                 { | ||||
|                     model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); | ||||
| @@ -4996,6 +5111,248 @@ static struct ggml_cgraph * llm_build_persimmon( | ||||
|     return gf; | ||||
| } | ||||
|  | ||||
| static struct ggml_cgraph * llm_build_bloom( | ||||
|          llama_context & lctx, | ||||
|      const llama_batch & batch) { | ||||
|     const auto & model   = lctx.model; | ||||
|     const auto & hparams = model.hparams; | ||||
|     const auto & cparams = lctx.cparams; | ||||
|  | ||||
|     const auto & kv_self = lctx.kv_self; | ||||
|  | ||||
|     GGML_ASSERT(!!kv_self.ctx); | ||||
|  | ||||
|     const int64_t n_embd      = hparams.n_embd; | ||||
|     const int64_t n_layer     = hparams.n_layer; | ||||
|     const int64_t n_ctx       = cparams.n_ctx; | ||||
|     const int64_t n_head      = hparams.n_head; | ||||
|     const int64_t n_head_kv   = hparams.n_head_kv; | ||||
|     const int64_t n_embd_head = hparams.n_embd_head(); | ||||
|     const int64_t n_embd_gqa  = hparams.n_embd_gqa(); | ||||
|  | ||||
|     GGML_ASSERT(n_embd_head == hparams.n_rot); | ||||
|  | ||||
|     const float norm_eps = hparams.f_norm_eps; | ||||
|  | ||||
|     const int32_t n_tokens = batch.n_tokens; | ||||
|     const int32_t n_kv     = ggml_allocr_is_measure(lctx.alloc) ? n_ctx            : kv_self.n; | ||||
|     const int32_t kv_head  = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; | ||||
|  | ||||
|     auto & buf_compute = lctx.buf_compute; | ||||
|  | ||||
|     struct ggml_init_params params = { | ||||
|         /*.mem_size   =*/ buf_compute.size, | ||||
|         /*.mem_buffer =*/ buf_compute.data, | ||||
|         /*.no_alloc   =*/ false, | ||||
|     }; | ||||
|  | ||||
|     params.no_alloc = true; | ||||
|  | ||||
|     struct ggml_context * ctx0 = ggml_init(params); | ||||
|  | ||||
|     ggml_cgraph * gf = ggml_new_graph(ctx0); | ||||
|  | ||||
|     struct ggml_tensor * cur; | ||||
|     struct ggml_tensor * token; | ||||
|     struct ggml_tensor * inpL; | ||||
|  | ||||
|     if (batch.token) { | ||||
|         struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); | ||||
|  | ||||
|         ggml_allocr_alloc(lctx.alloc, inp_tokens); | ||||
|         if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|             memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); | ||||
|         } | ||||
|         ggml_set_name(inp_tokens, "inp_tokens"); | ||||
|  | ||||
|         token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); | ||||
|     } else { | ||||
| #ifdef GGML_USE_MPI | ||||
|         GGML_ASSERT(false && "not implemented"); | ||||
| #endif | ||||
|  | ||||
|         token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); | ||||
|  | ||||
|         ggml_allocr_alloc(lctx.alloc, token); | ||||
|         if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|             memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token)); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // KQ_scale | ||||
|     struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); | ||||
|     ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); | ||||
|     ggml_allocr_alloc(lctx.alloc, KQ_scale); | ||||
|     if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|         ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); | ||||
|     } | ||||
|  | ||||
|     // KQ_mask (mask for 1 head, it will be broadcasted to all heads) | ||||
|     struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); | ||||
|     ggml_set_name(KQ_mask, "KQ_mask"); | ||||
|     ggml_allocr_alloc(lctx.alloc, KQ_mask); | ||||
|     if (!ggml_allocr_is_measure(lctx.alloc)) { | ||||
|         float * data = (float *) KQ_mask->data; | ||||
|         memset(data, 0, ggml_nbytes(KQ_mask)); | ||||
|  | ||||
|         for (int h = 0; h < 1; ++h) { | ||||
|             for (int j = 0; j < n_tokens; ++j) { | ||||
|                 const llama_pos    pos    = batch.pos[j]; | ||||
|                 const llama_seq_id seq_id = batch.seq_id[j]; | ||||
|  | ||||
|                 for (int i = 0; i < n_kv; ++i) { | ||||
|                     if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { | ||||
|                         data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // norm | ||||
|     { | ||||
|         inpL = ggml_norm(ctx0, token, norm_eps); | ||||
|         inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b); | ||||
|     } | ||||
|  | ||||
|     ggml_set_name(inpL, "inpL"); | ||||
|  | ||||
|     for (int il = 0; il < n_layer; ++il) { | ||||
|         { | ||||
|             // Norm | ||||
|             cur = ggml_norm(ctx0, inpL, norm_eps); | ||||
|             cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b); | ||||
|         } | ||||
|  | ||||
|         { | ||||
|             // Self Attention | ||||
|             cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv); | ||||
|  | ||||
|             struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd); | ||||
|             struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd); | ||||
|             struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa)); | ||||
|  | ||||
|             struct ggml_tensor * Qcur = tmpq; | ||||
|             struct ggml_tensor * Kcur = tmpk; | ||||
|  | ||||
|             // store key and value to memory | ||||
|             { | ||||
|                 struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); | ||||
|                 ggml_set_name(Vcur, "Vcur"); | ||||
|  | ||||
|                 struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); | ||||
|                 ggml_set_name(k, "k"); | ||||
|  | ||||
|                 struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, | ||||
|                         (   n_ctx)*ggml_element_size(kv_self.v), | ||||
|                         (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); | ||||
|  | ||||
|                 ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); | ||||
|                 ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); | ||||
|             } | ||||
|  | ||||
|             struct ggml_tensor * Q = | ||||
|                 ggml_permute(ctx0, | ||||
|                         ggml_cpy(ctx0, | ||||
|                             Qcur, | ||||
|                             ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)), | ||||
|                         0, 2, 1, 3); | ||||
|             ggml_set_name(Q, "Q"); | ||||
|  | ||||
|             struct ggml_tensor * K = | ||||
|                 ggml_view_3d(ctx0, kv_self.k, | ||||
|                         n_embd_head, n_kv, n_head_kv, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_gqa, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_head, | ||||
|                         ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); | ||||
|             ggml_set_name(K, "K"); | ||||
|  | ||||
|             // K * Q | ||||
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | ||||
|             ggml_set_name(KQ, "KQ"); | ||||
|  | ||||
|             // KQ_scaled = KQ / sqrt(n_embd_head) | ||||
|             // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] | ||||
|             struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); | ||||
|             ggml_set_name(KQ_scaled, "KQ_scaled"); | ||||
|  | ||||
|             struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8); | ||||
|             ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); | ||||
|  | ||||
|             // KQ_masked = mask_past(KQ_scaled) | ||||
|             struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); | ||||
|             ggml_set_name(KQ_masked, "KQ_masked"); | ||||
|  | ||||
|             // KQ = soft_max(KQ_masked) | ||||
|             struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); | ||||
|             ggml_set_name(KQ_soft_max, "KQ_soft_max"); | ||||
|  | ||||
|             // split cached V into n_head heads | ||||
|             struct ggml_tensor * V = | ||||
|                 ggml_view_3d(ctx0, kv_self.v, | ||||
|                         n_kv, n_embd_head, n_head_kv, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx*n_embd_head, | ||||
|                         ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); | ||||
|             ggml_set_name(V, "V"); | ||||
|  | ||||
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | ||||
|             ggml_set_name(KQV, "KQV"); | ||||
|  | ||||
|             // KQV_merged = KQV.permute(0, 2, 1, 3) | ||||
|             struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | ||||
|             ggml_set_name(KQV_merged, "KQV_merged"); | ||||
|  | ||||
|             // cur = KQV_merged.contiguous().view(n_embd, n_tokens) | ||||
|             cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); | ||||
|             ggml_set_name(cur, "KQV_merged_contiguous"); | ||||
|         } | ||||
|  | ||||
|         // Projection | ||||
|         cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo); | ||||
|  | ||||
|         // Add the input | ||||
|         cur = ggml_add(ctx0, cur, inpL); | ||||
|  | ||||
|         struct ggml_tensor * inpFF = cur; | ||||
|  | ||||
|         // FF | ||||
|         { | ||||
|             // Norm | ||||
|             { | ||||
|                 cur = ggml_norm(ctx0, inpFF, norm_eps); | ||||
|                 cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b); | ||||
|             } | ||||
|  | ||||
|             cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3); | ||||
|  | ||||
|             // GELU activation | ||||
|             cur = ggml_gelu(ctx0, cur); | ||||
|  | ||||
|             // Projection | ||||
|             cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2); | ||||
|         } | ||||
|  | ||||
|         inpL = ggml_add(ctx0, cur, inpFF); | ||||
|     } | ||||
|  | ||||
|     // Output Norm | ||||
|     { | ||||
|         cur = ggml_norm(ctx0, inpL, norm_eps); | ||||
|         cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b); | ||||
|     } | ||||
|     ggml_set_name(cur, "result_norm"); | ||||
|  | ||||
|     cur = ggml_mul_mat(ctx0, model.output, cur); | ||||
|     ggml_set_name(cur, "result_output"); | ||||
|  | ||||
|     ggml_build_forward_expand(gf, cur); | ||||
|  | ||||
|     ggml_free(ctx0); | ||||
|  | ||||
|     return gf; | ||||
| } | ||||
|  | ||||
| static struct ggml_cgraph * llm_build_mpt( | ||||
|          llama_context & lctx, | ||||
|      const llama_batch & batch) { | ||||
| @@ -5025,9 +5382,6 @@ static struct ggml_cgraph * llm_build_mpt( | ||||
|     const int32_t n_kv     = ggml_allocr_is_measure(lctx.alloc) ? n_ctx            : kv_self.n; | ||||
|     const int32_t kv_head  = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; | ||||
|  | ||||
|     //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n", | ||||
|     //        kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift); | ||||
|  | ||||
|     auto & buf_compute = lctx.buf_compute; | ||||
|  | ||||
|     struct ggml_init_params params = { | ||||
| @@ -5348,6 +5702,10 @@ static struct ggml_cgraph * llama_build_graph( | ||||
|             { | ||||
|                 result = llm_build_refact(lctx, batch); | ||||
|             } break; | ||||
|         case LLM_ARCH_BLOOM: | ||||
|             { | ||||
|                 result = llm_build_bloom(lctx, batch); | ||||
|             } break; | ||||
|         case LLM_ARCH_MPT: | ||||
|             { | ||||
|                 result = llm_build_mpt(lctx, batch); | ||||
| @@ -7579,8 +7937,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s | ||||
|         const std::string name = ggml_get_name(meta); | ||||
|  | ||||
|         // TODO: avoid hardcoded tensor names - use the TN_* constants | ||||
|         if (name.find("attn_v.weight") != std::string::npos || | ||||
|             name.find("attn_qkv.weight") != std::string::npos) { | ||||
|         if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { | ||||
|             ++n_attention_wv; | ||||
|         } | ||||
|         else if (name.find("ffn_down.weight") != std::string::npos) { | ||||
|   | ||||
		Reference in New Issue
	
	Block a user