mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	mtmd : add qwen2vl and qwen2.5vl (#13141)
* llava : add clip_n_output_tokens, deprecate clip_n_patches * mtmd : add qwen2vl and qwen2.5vl * decode_embd_batch::set_position_... * working version * deprecate llama-qwen2vl-cli * correct order W, H of clip_embd_nbytes_by_img * edit existing line in hot topics
This commit is contained in:
		
							
								
								
									
										636
									
								
								examples/llava/qwen2vl-test.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										636
									
								
								examples/llava/qwen2vl-test.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,636 @@ | ||||
| #include "arg.h" | ||||
| #include "base64.hpp" | ||||
| #include "log.h" | ||||
| #include "common.h" | ||||
| #include "sampling.h" | ||||
| #include "clip.h" | ||||
| #include "llava.h" | ||||
| #include "llama.h" | ||||
| #include "ggml.h" | ||||
|  | ||||
| #ifdef GGML_USE_CUDA | ||||
| #include "ggml-cuda.h" | ||||
| #endif | ||||
| #ifdef NDEBUG | ||||
| #include "ggml-alloc.h" | ||||
| #include "ggml-backend.h" | ||||
| #endif | ||||
|  | ||||
| #include <cstdio> | ||||
| #include <cstdlib> | ||||
| #include <cstring> | ||||
| #include <vector> | ||||
| #include <algorithm> | ||||
| #include <iostream> | ||||
| #include <fstream> | ||||
| #include <limits> | ||||
| #include <cassert> | ||||
| #include <cmath> | ||||
|  | ||||
| // THIS FILE IS ONLY USED FOR TESTING THE QWEN2VL MODEL | ||||
| // IT IS NOT A PRODUCTION CODE | ||||
|  | ||||
| static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, | ||||
|                                      int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) { | ||||
|     int n_embd  = llama_model_n_embd(llama_get_model(ctx_llama)); | ||||
|     const int patch_size = 14 * 2; | ||||
|     const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0); | ||||
|     const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0); | ||||
|     auto img_tokens = image_embed->n_image_pos; | ||||
|     // llama_pos mrope_pos[img_tokens * 4]; | ||||
|     std::vector<llama_pos> mrope_pos; | ||||
|     mrope_pos.resize(img_tokens * 4); | ||||
|  | ||||
|     for (int y = 0; y < ph; y++) | ||||
|     { | ||||
|         for (int x = 0; x < pw; x++) | ||||
|         { | ||||
|             int i = y * pw + x; | ||||
|             mrope_pos[i] = *st_pos_id; | ||||
|             mrope_pos[i + img_tokens] = *st_pos_id + y; | ||||
|             mrope_pos[i + img_tokens * 2] = *st_pos_id + x; | ||||
|             mrope_pos[i + img_tokens * 3] = 0; | ||||
|         } | ||||
|     } | ||||
|     *st_pos_id += std::max(pw, ph); | ||||
|  | ||||
|     int processed = 0; | ||||
|     std::vector<llama_pos> batch_mrope_pos; | ||||
|     batch_mrope_pos.resize(img_tokens * 4); | ||||
|  | ||||
|     for (int i = 0; i < img_tokens; i += n_batch) { | ||||
|         int n_eval = img_tokens - i; | ||||
|         if (n_eval > n_batch) { | ||||
|             n_eval = n_batch; | ||||
|         } | ||||
|  | ||||
|         // llama_pos batch_mrope_pos[n_eval * 4]; | ||||
|         std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0); | ||||
|         memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos)); | ||||
|         memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos)); | ||||
|         memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos)); | ||||
|         memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos)); | ||||
|  | ||||
|         llama_batch batch = { | ||||
|             int32_t(n_eval),                // n_tokens | ||||
|             nullptr,                        // token | ||||
|             (image_embed->embed+i*n_embd),  // embed | ||||
|             batch_mrope_pos.data(),         // pos | ||||
|             nullptr,  // n_seq_id | ||||
|             nullptr,  // seq_id | ||||
|             nullptr,  // logits | ||||
|         }; | ||||
|  | ||||
|         if (llama_decode(ctx_llama, batch)) { | ||||
|             LOG_ERR("%s : failed to eval\n", __func__); | ||||
|             return false; | ||||
|         } | ||||
|         *n_past += n_eval; | ||||
|         processed += n_eval; | ||||
|     } | ||||
|     return true; | ||||
| } | ||||
|  | ||||
|  | ||||
| static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) { | ||||
|     int N = (int) tokens.size(); | ||||
|     for (int i = 0; i < N; i += n_batch) { | ||||
|         int n_eval = (int) tokens.size() - i; | ||||
|         if (n_eval > n_batch) { | ||||
|             n_eval = n_batch; | ||||
|         } | ||||
|         auto batch = llama_batch_get_one(&tokens[i], n_eval); | ||||
|  | ||||
|         if (llama_decode(ctx_llama, batch)) { | ||||
|             LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); | ||||
|             return false; | ||||
|         } | ||||
|         *n_past += n_eval; | ||||
|         *st_pos_id += n_eval; | ||||
|     } | ||||
|     return true; | ||||
| } | ||||
|  | ||||
| static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) { | ||||
|     std::vector<llama_token> tokens; | ||||
|     tokens.push_back(id); | ||||
|     return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id); | ||||
| } | ||||
|  | ||||
| static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){ | ||||
|     std::string              str2     = str; | ||||
|     std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true); | ||||
|     eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id); | ||||
|     return true; | ||||
| } | ||||
|  | ||||
| static const char * sample(struct common_sampler * smpl, | ||||
|                            struct llama_context * ctx_llama, | ||||
|                            int * n_past, int * st_pos_id) { | ||||
|     const llama_token id = common_sampler_sample(smpl, ctx_llama, -1); | ||||
|     common_sampler_accept(smpl, id, true); | ||||
|  | ||||
|     const llama_model * model = llama_get_model(ctx_llama); | ||||
|     const llama_vocab * vocab = llama_model_get_vocab(model); | ||||
|  | ||||
|     static std::string ret; | ||||
|     if (llama_vocab_is_eog(vocab, id)) { | ||||
|         ret = "</s>"; | ||||
|     } else { | ||||
|         ret = common_token_to_piece(ctx_llama, id); | ||||
|     } | ||||
|     eval_id(ctx_llama, id, n_past, st_pos_id); | ||||
|     return ret.c_str(); | ||||
| } | ||||
|  | ||||
| static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,"; | ||||
| static const char* IMG_BASE64_TAG_END = "\">"; | ||||
|  | ||||
| static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { | ||||
|     begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); | ||||
|     end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); | ||||
| } | ||||
|  | ||||
| static bool prompt_contains_image(const std::string& prompt) { | ||||
|     size_t begin, end; | ||||
|     find_image_tag_in_prompt(prompt, begin, end); | ||||
|     return (begin != std::string::npos); | ||||
| } | ||||
|  | ||||
| // replaces the base64 image tag in the prompt with `replacement` | ||||
| static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) { | ||||
|     size_t img_base64_str_start, img_base64_str_end; | ||||
|     find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); | ||||
|     if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { | ||||
|         LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); | ||||
|         return NULL; | ||||
|     } | ||||
|  | ||||
|     auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN); | ||||
|     auto base64_bytes_count = img_base64_str_end - base64_bytes_start; | ||||
|     auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count ); | ||||
|  | ||||
|     auto required_bytes = base64::required_encode_size(base64_str.size()); | ||||
|     auto img_bytes = std::vector<unsigned char>(required_bytes); | ||||
|     base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); | ||||
|  | ||||
|     auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); | ||||
|     if (!embed) { | ||||
|         LOG_ERR("%s: could not load image from base64 string.\n", __func__); | ||||
|         return NULL; | ||||
|     } | ||||
|  | ||||
|     return embed; | ||||
| } | ||||
|  | ||||
| static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { | ||||
|     size_t begin, end; | ||||
|     find_image_tag_in_prompt(prompt, begin, end); | ||||
|     if (begin == std::string::npos || end == std::string::npos) { | ||||
|         return prompt; | ||||
|     } | ||||
|     auto pre = prompt.substr(0, begin); | ||||
|     auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END)); | ||||
|     return pre + replacement + post; | ||||
| } | ||||
|  | ||||
| struct llava_context { | ||||
|     struct clip_ctx * ctx_clip = NULL; | ||||
|     struct llama_context * ctx_llama = NULL; | ||||
|     struct llama_model * model = NULL; | ||||
| }; | ||||
|  | ||||
| static void print_usage(int, char ** argv) { | ||||
|     LOG("\n example usage:\n"); | ||||
|     LOG("\n     %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); | ||||
|     LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); | ||||
| } | ||||
|  | ||||
| static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) { | ||||
|  | ||||
|     // load and preprocess the image | ||||
|     llava_image_embed * embed = NULL; | ||||
|     auto prompt = params->prompt; | ||||
|     if (prompt_contains_image(prompt)) { | ||||
|         if (!params->image.empty()) { | ||||
|             LOG_INF("using base64 encoded image instead of command line image path\n"); | ||||
|         } | ||||
|         embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt); | ||||
|         if (!embed) { | ||||
|             LOG_ERR("%s: can't load image from prompt\n", __func__); | ||||
|             return NULL; | ||||
|         } | ||||
|         params->prompt = remove_image_from_prompt(prompt); | ||||
|     } else { | ||||
|         embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str()); | ||||
|         if (!embed) { | ||||
|             fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); | ||||
|             return NULL; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     return embed; | ||||
| } | ||||
|  | ||||
| static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) { | ||||
|     int n_past = 0; | ||||
|     int cur_pos_id = 0; | ||||
|  | ||||
|     const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; | ||||
|  | ||||
|     std::string system_prompt, user_prompt; | ||||
|     size_t image_pos = prompt.find("<|vision_start|>"); | ||||
|     if (image_pos != std::string::npos) { | ||||
|         // new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image | ||||
|         system_prompt = prompt.substr(0, image_pos); | ||||
|         user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length()); | ||||
|         LOG_INF("system_prompt: %s\n", system_prompt.c_str()); | ||||
|         if (params->verbose_prompt) { | ||||
|             auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); | ||||
|             for (int i = 0; i < (int) tmp.size(); i++) { | ||||
|                 LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | ||||
|             } | ||||
|         } | ||||
|         LOG_INF("user_prompt: %s\n", user_prompt.c_str()); | ||||
|         if (params->verbose_prompt) { | ||||
|             auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); | ||||
|             for (int i = 0; i < (int) tmp.size(); i++) { | ||||
|                 LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | ||||
|             } | ||||
|         } | ||||
|     } else { | ||||
|         // llava-1.5 native mode | ||||
|         system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>"; | ||||
|         user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n"; | ||||
|         if (params->verbose_prompt) { | ||||
|             auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); | ||||
|             for (int i = 0; i < (int) tmp.size(); i++) { | ||||
|                 LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true); | ||||
|     if (image_embed != nullptr) { | ||||
|         auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip); | ||||
|         qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size); | ||||
|     } | ||||
|     eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false); | ||||
|  | ||||
|     // generate the response | ||||
|  | ||||
|     LOG("\n"); | ||||
|  | ||||
|     struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling); | ||||
|     if (!smpl) { | ||||
|         LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); | ||||
|         exit(1); | ||||
|     } | ||||
|  | ||||
|     std::string response = ""; | ||||
|     for (int i = 0; i < max_tgt_len; i++) { | ||||
|         const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id); | ||||
|         response += tmp; | ||||
|         if (strcmp(tmp, "</s>") == 0) break; | ||||
|         if (strstr(tmp, "###")) break; // Yi-VL behavior | ||||
|         LOG("%s", tmp); | ||||
|         if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works) | ||||
|         if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6 | ||||
|         if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6 | ||||
|  | ||||
|         fflush(stdout); | ||||
|     } | ||||
|  | ||||
|     common_sampler_free(smpl); | ||||
|     LOG("\n"); | ||||
| } | ||||
|  | ||||
| static struct llama_model * llava_init(common_params * params) { | ||||
|     llama_backend_init(); | ||||
|     llama_numa_init(params->numa); | ||||
|  | ||||
|     llama_model_params model_params = common_model_params_to_llama(*params); | ||||
|  | ||||
|     llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params); | ||||
|     if (model == NULL) { | ||||
|         LOG_ERR("%s: unable to load model\n" , __func__); | ||||
|         return NULL; | ||||
|     } | ||||
|     return model; | ||||
| } | ||||
|  | ||||
| static struct llava_context * llava_init_context(common_params * params, llama_model * model) { | ||||
|     const char * clip_path = params->mmproj.path.c_str(); | ||||
|  | ||||
|     auto prompt = params->prompt; | ||||
|     if (prompt.empty()) { | ||||
|         prompt = "describe the image in detail."; | ||||
|     } | ||||
|  | ||||
|     auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO); | ||||
|  | ||||
|     llama_context_params ctx_params = common_context_params_to_llama(*params); | ||||
|     ctx_params.n_ctx           = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings | ||||
|  | ||||
|     llama_context * ctx_llama = llama_init_from_model(model, ctx_params); | ||||
|  | ||||
|     if (ctx_llama == NULL) { | ||||
|         LOG_ERR("%s: failed to create the llama_context\n" , __func__); | ||||
|         return NULL; | ||||
|     } | ||||
|  | ||||
|     auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); | ||||
|  | ||||
|     ctx_llava->ctx_llama = ctx_llama; | ||||
|     ctx_llava->ctx_clip = ctx_clip; | ||||
|     ctx_llava->model = model; | ||||
|     return ctx_llava; | ||||
| } | ||||
|  | ||||
| static void llava_free(struct llava_context * ctx_llava) { | ||||
|     if (ctx_llava->ctx_clip) { | ||||
|         clip_free(ctx_llava->ctx_clip); | ||||
|         ctx_llava->ctx_clip = NULL; | ||||
|     } | ||||
|  | ||||
|     llama_free(ctx_llava->ctx_llama); | ||||
|     llama_model_free(ctx_llava->model); | ||||
|     llama_backend_free(); | ||||
| } | ||||
|  | ||||
| #ifndef NDEBUG | ||||
|  | ||||
| static void debug_test_mrope_2d() { | ||||
|     // 1. Initialize backend | ||||
|     ggml_backend_t backend = NULL; | ||||
|     std::string backend_name = ""; | ||||
| // #ifdef GGML_USE_CUDA | ||||
| //     fprintf(stderr, "%s: using CUDA backend\n", __func__); | ||||
| //     backend = ggml_backend_cuda_init(0); // init device 0 | ||||
| //     backend_name = "cuda"; | ||||
| //     if (!backend) { | ||||
| //         fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); | ||||
| //     } | ||||
| // #endif | ||||
|     // if there aren't GPU Backends fallback to CPU backend | ||||
|     if (!backend) { | ||||
|         backend = ggml_backend_cpu_init(); | ||||
|         backend_name = "cpu"; | ||||
|     } | ||||
|  | ||||
|     // Calculate the size needed to allocate | ||||
|     size_t ctx_size = 0; | ||||
|     ctx_size += 2 * ggml_tensor_overhead(); // tensors | ||||
|     // no need to allocate anything else! | ||||
|  | ||||
|     // 2. Allocate `ggml_context` to store tensor data | ||||
|     struct ggml_init_params params = { | ||||
|         /*.mem_size   =*/ ctx_size, | ||||
|         /*.mem_buffer =*/ NULL, | ||||
|         /*.no_alloc   =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() | ||||
|     }; | ||||
|     struct ggml_context * ctx = ggml_init(params); | ||||
|  | ||||
|     struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30); | ||||
|     ggml_set_name(inp_raw, "inp_raw"); | ||||
|     ggml_set_input(inp_raw); | ||||
|  | ||||
|     struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4); | ||||
|     ggml_set_name(pos, "pos"); | ||||
|     ggml_set_input(pos); | ||||
|  | ||||
|     std::vector<float> dummy_q; | ||||
|     dummy_q.resize(128 * 12 * 30); | ||||
|     std::fill(dummy_q.begin(), dummy_q.end(), 0.1); | ||||
|     // memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw)); | ||||
|  | ||||
|     std::vector<int> pos_id; | ||||
|     pos_id.resize(30 * 4); | ||||
|     for (int i = 0; i < 30; i ++) { | ||||
|         pos_id[i] = i; | ||||
|         pos_id[i + 30] = i + 10; | ||||
|         pos_id[i + 60] = i + 20; | ||||
|         pos_id[i + 90] = i + 30; | ||||
|     } | ||||
|     int sections[4] = {32, 32, 0, 0}; | ||||
|  | ||||
|     // 4. Allocate a `ggml_backend_buffer` to store all tensors | ||||
|     ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); | ||||
|  | ||||
|     // 5. Copy tensor data from main memory (RAM) to backend buffer | ||||
|     ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw)); | ||||
|     ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos)); | ||||
|  | ||||
|     // 6. Create a `ggml_cgraph` for mul_mat operation | ||||
|     struct ggml_cgraph * gf = NULL; | ||||
|     struct ggml_context * ctx_cgraph = NULL; | ||||
|  | ||||
|     // create a temporally context to build the graph | ||||
|     struct ggml_init_params params0 = { | ||||
|         /*.mem_size   =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(), | ||||
|         /*.mem_buffer =*/ NULL, | ||||
|         /*.no_alloc   =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() | ||||
|     }; | ||||
|     ctx_cgraph = ggml_init(params0); | ||||
|     gf = ggml_new_graph(ctx_cgraph); | ||||
|  | ||||
|     struct ggml_tensor * result0 = ggml_rope_multi( | ||||
|         ctx_cgraph, inp_raw, pos, nullptr, | ||||
|         128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1, | ||||
|         0, 1, 32, 1); | ||||
|  | ||||
|     // Add "result" tensor and all of its dependencies to the cgraph | ||||
|     ggml_build_forward_expand(gf, result0); | ||||
|  | ||||
|     // 7. Create a `ggml_gallocr` for cgraph computation | ||||
|     ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); | ||||
|     ggml_gallocr_alloc_graph(allocr, gf); | ||||
|  | ||||
|     // 9. Run the computation | ||||
|     int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading | ||||
|     if (ggml_backend_is_cpu(backend)) { | ||||
|         ggml_backend_cpu_set_n_threads(backend, n_threads); | ||||
|     } | ||||
|     ggml_backend_graph_compute(backend, gf); | ||||
|  | ||||
|     // 10. Retrieve results (output tensors) | ||||
|     // in this example, output tensor is always the last tensor in the graph | ||||
|     struct ggml_tensor * result = result0; | ||||
|     // struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1]; | ||||
|     float * result_data = (float *)malloc(ggml_nbytes(result)); | ||||
|     // because the tensor data is stored in device buffer, we need to copy it back to RAM | ||||
|     ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result)); | ||||
|     const std::string bin_file = "mrope_2d_" + backend_name +".bin"; | ||||
|     std::ofstream outFile(bin_file, std::ios::binary); | ||||
|  | ||||
|     if (outFile.is_open()) { | ||||
|         outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result)); | ||||
|         outFile.close(); | ||||
|         std::cout << "Data successfully written to " + bin_file << std::endl; | ||||
|     } else { | ||||
|         std::cerr << "Error opening file!" << std::endl; | ||||
|     } | ||||
|  | ||||
|     free(result_data); | ||||
|     // 11. Free memory and exit | ||||
|     ggml_free(ctx_cgraph); | ||||
|     ggml_gallocr_free(allocr); | ||||
|     ggml_free(ctx); | ||||
|     ggml_backend_buffer_free(buffer); | ||||
|     ggml_backend_free(backend); | ||||
| } | ||||
|  | ||||
| enum model_output_type { | ||||
|     conv3d, | ||||
|     patch_embed, | ||||
|     patch_win_attn_scatter, | ||||
|     first_attn_layer, | ||||
|     last_attn_layer, | ||||
|     attn_softmax, | ||||
|     final_layer, | ||||
| }; | ||||
|  | ||||
| static void debug_dump_img_embed(struct llava_context * ctx_llava, model_output_type output_type) { | ||||
|     constexpr int ih = 140; | ||||
|     constexpr int iw = 196; | ||||
|     // constexpr int ih = 56; | ||||
|     // constexpr int iw = 56; | ||||
|     // int n_embd  = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama)); | ||||
|     int n_embd  = 1280; | ||||
|     int merge = 1; | ||||
|     if (output_type == model_output_type::final_layer) { | ||||
|         n_embd  = 2048; | ||||
|         merge = 2; | ||||
|     } | ||||
|     else if (output_type == model_output_type::attn_softmax) { | ||||
|         merge = 1; | ||||
|         n_embd = (ih/14/merge) * (iw/14/merge) * 16; | ||||
|     } | ||||
|  | ||||
|     int ne = (ih/14/merge) * (iw/14/merge) * n_embd; | ||||
|     float vals[iw * ih * 3]; | ||||
|     // float embd[ne]; | ||||
|     std::vector<float> embd; | ||||
|     embd.resize(ne); | ||||
|  | ||||
|     for (int i = 0; i < iw*ih; i++) | ||||
|     { | ||||
|         for (int c = 0; c < 3; c++) | ||||
|             vals[i * 3 + c] = (float)i / (iw*ih); | ||||
|     } | ||||
|  | ||||
|     clip_encode_float_image(ctx_llava->ctx_clip, 8, vals, ih, iw, embd.data()); | ||||
|  | ||||
|     std::string file_postfix = ""; | ||||
|     switch (output_type) | ||||
|     { | ||||
|     case model_output_type::conv3d: | ||||
|         file_postfix = "conv3d"; | ||||
|         break; | ||||
|     case model_output_type::patch_embed: | ||||
|         file_postfix = "patch_embed"; | ||||
|         break; | ||||
|     case model_output_type::patch_win_attn_scatter: | ||||
|         file_postfix = "scatter"; | ||||
|         break; | ||||
|     case model_output_type::first_attn_layer: | ||||
|         file_postfix = "first_attn"; | ||||
|         break; | ||||
|     case model_output_type::last_attn_layer: | ||||
|         file_postfix = "last_attn"; | ||||
|         break; | ||||
|     case model_output_type::attn_softmax: | ||||
|         file_postfix = "attn_softmax"; | ||||
|         break; | ||||
|     case model_output_type::final_layer: | ||||
|         file_postfix = "final"; | ||||
|         break; | ||||
|     default: | ||||
|         break; | ||||
|     } | ||||
|     auto output_path = "img_embed_" + file_postfix + ".bin"; | ||||
|  | ||||
|     std::ofstream outFile(output_path, std::ios::binary); | ||||
|     if (outFile.is_open()) { | ||||
|         outFile.write(reinterpret_cast<const char*>(embd.data()), ne * sizeof(float)); | ||||
|  | ||||
|         outFile.close(); | ||||
|         std::cout << "Data successfully written to ::[ " << output_path << std::endl; | ||||
|     } else { | ||||
|         std::cerr << "Error opening file!" << std::endl; | ||||
|     } | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| int main(int argc, char ** argv) { | ||||
|     ggml_time_init(); | ||||
|  | ||||
|     common_params params; | ||||
|  | ||||
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) { | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     common_init(); | ||||
|  | ||||
|     if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { | ||||
|         print_usage(argc, argv); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     auto * model = llava_init(¶ms); | ||||
|     if (model == NULL) { | ||||
|         fprintf(stderr, "%s: error: failed to init llava model\n", __func__); | ||||
|         return 1; | ||||
|     } | ||||
|  | ||||
|     if (prompt_contains_image(params.prompt)) { | ||||
|         auto * ctx_llava = llava_init_context(¶ms, model); | ||||
|  | ||||
|         auto * image_embed = load_image(ctx_llava, ¶ms, ""); | ||||
|  | ||||
|         // process the prompt | ||||
|         process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); | ||||
|  | ||||
|         llama_perf_context_print(ctx_llava->ctx_llama); | ||||
|         llava_image_embed_free(image_embed); | ||||
|         ctx_llava->model = NULL; | ||||
|         llava_free(ctx_llava); | ||||
| #ifndef NDEBUG | ||||
|     } else if (params.image[0].empty()) { | ||||
|         auto ctx_llava = llava_init_context(¶ms, model); | ||||
|  | ||||
|         // debug_test_mrope_2d(); | ||||
|         debug_dump_img_embed(ctx_llava, model_output_type::final_layer); | ||||
|         // debug_dump_img_embed(ctx_llava, model_output_type::last_attn_layer); | ||||
|  | ||||
|         llama_perf_context_print(ctx_llava->ctx_llama); | ||||
|         ctx_llava->model = NULL; | ||||
|         llava_free(ctx_llava); | ||||
| #endif | ||||
|     } else { | ||||
|         for (auto & image : params.image) { | ||||
|             auto * ctx_llava = llava_init_context(¶ms, model); | ||||
|  | ||||
|             auto * image_embed = load_image(ctx_llava, ¶ms, image); | ||||
|             if (!image_embed) { | ||||
|                 LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str()); | ||||
|                 return 1; | ||||
|             } | ||||
|  | ||||
|             // process the prompt | ||||
|             process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); | ||||
|  | ||||
|             llama_perf_context_print(ctx_llava->ctx_llama); | ||||
|             llava_image_embed_free(image_embed); | ||||
|             ctx_llava->model = NULL; | ||||
|             llava_free(ctx_llava); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     llama_model_free(model); | ||||
|  | ||||
|     return 0; | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Xuan-Son Nguyen
					Xuan-Son Nguyen